Resonance fluorescence lidar for study of different species in MLT region

S. Raizada Thanks to:

C. A. Tepley, J. F. Friedman, J. Hoffner, J. M C. Plane

NSF

Outline

- Introduction
 - Metals in the MLT (occurrence)
 - ❖ How were they discovered (a brief history)
 - *Resonance lidar technique
 - Significance of metals
- Distribution and Characteristics
 - Comparison of layers in different metals
 - Topside v/s Main layer
 - Effect of temperature
- Summary

Characteristics of Mesospheric Region

Low temperatures

Occurrence of metallic layers

- Most of EUV removed in thermosphere
- Lack of efficient formation of ozone
- CO₂ contributes directly to the cooling

Technique: Resonance Scattering

Resonance: specific atomic transition (source wavelength matched in frequency to the atomic transition frequency.)

A Brief History

- Airglow observations: Existence of Na atoms during twilight (Chamberlain et al., JATP,1958)
- First Lidar observations: Resonance Scattering from atomic Na (Bowman et al., Nature, 1969)
- Long-term Na observations:
 - Clemesha (Southern Hemisphere)
 - C. Y. She (Northern Hemisphere)

A Brief History

- K, Ca, Ca⁺ and Fe: Haute Provence, France (44 deg N)
 - Felix et al., 1973 and Megie et al., 1978
 - Observations made one after another
- Na, Fe, Ca⁺: Illinois (40 deg N)
 - Gardner et al., (1993)
 - Observed simultaneously
- Ca and Ca⁺: (Kulungsborn, Germany)
 - Alpers et al. (1993)

Lidar Equation

Retrieval of densities: Subtract the measured background counts from the received photon counts

$$n_{S}(z) = \frac{4\pi z^{2}hc/\lambda}{\eta T_{A}^{2}P_{L}A_{R}\tau\sigma_{eff}\Delta z}[N(z) - N_{B}R\tau]$$

Analysis

Absolute Density: Normalize relative to Rayleigh signal from aerosol free region

$$N_R(z) = \left(\eta T_A^2\right) \left(\frac{P_L \tau}{hc/\lambda}\right) \left(\sigma_R n_A(z) \Delta z\right) \left(\frac{A_R}{4\pi z^2}\right) + N_B R \tau$$

$$n_s(z) = \left(\frac{z^2 \sigma_R n_A(z_R)}{z_R^2 \sigma_{eff}}\right) \frac{\left(N(z) - N_B R \tau\right)}{\left(N_R(z_R) - N_B R \tau\right)}$$

Measurement accuracies depend on total photon counts in the profile:

$$N_S = \eta T_A^2 \frac{\left(\sigma_{eff} C_s\right)}{\left(4\pi z^2 h c/\lambda\right)} P_L A_R \tau$$

Gardner et al., JGR, 1986

Generation of different wavelengths

Motivation:

- Why are some metals more abundant than others?
 - Ca and Na: equal abundance in meteoric material but in the mesosphere Na abundance exceeds Ca by a factor of 50 100.
- Do all the metals behave in similar way?
- What factors influence layer structuring?
- Is there any difference in the latitudinal distribution of metals?
- How are neutrals and ionized species coupled?

Observations

Development of models

Example of coupling between neutral and ionic species Arecibo Data

Ca neutral from lidar

Ca Ion from lidar

Electron
Density from
ISR

Characteristics of layers: Examples showing diferences

K_S layer

Topside layers

Kühlungsborn (54° N), K data

Kühlungsborn (54° N), Ca data

Arecibo (18° N), K data

Höffner and Friedman, Atmos. Chem. Phys, 2004

Annual variation of RMS width of Fe layer at Arecibo

RMS widths Summer to winter ratios:

At Arecibo ≈ 1.30 At Urbana ≈ 0.66

Widths mainly governed by the reaction
 Fe + O₂ + M → FeO₂ + M (Inverse Temp. Dependence)

Fe + O_2 + M \rightarrow Fe O_2 + M (Inverse Temp. Dependence)

- Smaller widths during summer at mid-latitudes: (a) Cold mesopause temperatures and (b) increase in [O₂]
- Warmer temperatures along with less [O₂] at low latitudes slows the removal of Fe during summer time causing broader widths.

Other consequences of low temperatures:

The coldest part of the mesosphere occurs during summertime at high latitudes.

Plane et al., Science, 2004

Hemispheric differences in PMC altitudes

Modeling work: differences in solar flux and mean flow driven by GWs can contribute to this variation in PMC altitudes.

(Chu et al., JGR, 2006)

Summary

- Different metal layers often display layering structures that are not correlated
- Main layers show seasonal distribution that varies from one metal to other, along with strong latitudinal variation
- Topside layers, even though weak, show same seasonal variation for different metals and a weak latitudinal variation.
- At high latitudes, PMC cause removal of metals.