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Light Detection And Ranging 

CEDAR Lidar Tutorial	



  LIDAR Fundamentals 

  Physical Interactions in Lidar 

  Lidar Data Retrieval  

  Lidar Science Highlight 

  Conclusions 
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From Searchlight to Modern Lidar 
  Light detection and ranging (LIDAR) started with using CW searchlights to 
measure stratospheric aerosols and molecular density in 1930s.�
  Hulburt [1937] pioneered the searchlight technique. Elterman [1951, 1954, 1966] 
pushed the searchlight lidar to a high level and made practical devices. �
  The first laser - a ruby laser was invented in 1960 by Schawlow and Townes 
[1958] (fundamental work) and Maiman [1960] (construction). The first giant-pulse 
technique (Q-Switch) was invented by McClung and Hellwarth [1962].�
  The first laser studies of the atmosphere were undertaken by Fiocco and Smullin 
[1963] for upper region and by Ligda [1963] for troposphere.�

From Aerosol Detection to Spectral Analysis 
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  The first application of lidar was the detection of atmospheric aerosols and 
density: detecting only the scattering intensity but no spectral information.�
  An important advance in lidar was the recognition that the spectra of the 
detected radiation contained highly specific information related to the species, 
which could be used to determine the composition of the object region. Laser-
based spectral analysis added a new dimension to lidar and made possible an 
extraordinary variety of applications, ranging from groundbased probing of the 
trace-constituent distribution in the tenuous outer reaches of the atmosphere, to 
lower atmosphere constituents, to airborne chlorophyll mapping of the oceans to 
establish rich fishing areas.�
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Lidar Configuration 
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Picture of Lidar Remote Sensing 
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Lidar Equation 

€ 

NS (λ ,R) = NL (λL ) ⋅ β(λ ,λL ,θ,R)ΔR[ ] ⋅ A
R2

⋅ T (λL ,R)T (λ ,R)[ ] ⋅ η(λ ,λL )G(R)[ ] +NB

  General lidar equation with angular scattering coefficient�
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PL (λL )Δt

hc λL
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  General lidar equation in angular scattering coefficient β and 
extinction coefficient α form�
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Biaxial vs. Coaxial Arrangements 
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“Fancy” Lidar Architecture 
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VAD Technique for Vector Wind 

€ 

VR = u sinθ cosϕ + v cosθ cosϕ +w sinϕ

€ 

VectorWind = (u,v,w) = (bsinθmax /cosϕ ,bcosθmax /cosϕ ,a /sinϕ )

VAD�

  Velocity-Azimuth-Display (VAD) technique: swing lidar beam 
through 360° azimuth at a fixed elevation angle - lower atm lidar. �
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DBS Technique for Vector Wind 
  Doppler-Beam-Swinging (DBS) technique: pointing lidar beam to 
vertical, north, and east, or plus south and west (ZNEZSW).�

γ is the off-zenith angle�

VR > 0, w > 0, u > 0, v > 0 for wind towards away, upward, east, and north�
€ 

u = (VRE −VRZ cosγ) /sinγ
v = (VRN −VRZ cosγ) /sinγ
w =VRZ

€ 

VRE = u sinγ +w cosγ
VRN = v sinγ +w cosγ
VRZ = w
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€ 

VRE = u sinγ +w cosγ
VRW = −u sinγ +w cosγ
VRN = v sinγ +w cosγ
VRS = −v sinγ +w cosγ
VRZ = w

€ 

u = (VRE −VRW ) /sinγ /2
v = (VRN −VRS ) /sinγ /2
w =VRZ
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Physical Interaction 
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Elastic and Inelastic Scattering 
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Physical Interactions in Lidar 
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  70-120 km and above 120 km: 
resonance fluorescence (Fe, Na, K, 
He, O, N2

+) Doppler, Boltzmann, 
differential absorption lidar�
  Airglow, FP Interferometer�
  Molecule & aerosol scattering, 
Rayleigh and Raman integration , 
direct detection Doppler lidar�
  Molecular species, differential 
absorption and Raman lidar�
  Molecule & aerosol scattering 
High-spectral resolution lidar, 
Coherent detection Doppler lidar, 
Direct detection Doppler lidar, 
Direct motion detection tech 
(tracking aerosols, LDV, LTV)�
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Na Doppler (Wind & Temp) Lidar 
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Full-Diurnal Multiple-Beam Obs. 

 [Yuan et al., JGR, 2008] 

Dr. Chiao-Yao She 
with CSU Na lidar 
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Large Aperture for High Precision 

Momentum flux 
climatology 

Maui, Hawaii	



[Gardner and Liu, JGR, 2007]	



UIUC Na Wind & Temperature Lidar 
Coupled with Large Telescope 

[Chu et al., JGR, 2005]	
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Fe Boltzmann Temperature LIDAR 
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Shuttle Formed High-Z Sporadic Fe 
Columbia Space 
Shuttle launched 

on Jan 16, 2003 

[Stevens et al., GRL, 2005]	



High-Altitude 
Sporadic Fe layer 

detected by Fe 
Boltzmann Lidar 

on Jan 19, 2003  
at Rothera (67.5S) 

Lyman α Images 
from GUVI/

TIMED  

Causes: Shuttle 
Engine Ablation! 
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DIAL & Raman Lidar for Trace Gases 
  The atmosphere has many 
trace gases from natural or 
anthropogenic sources, like 
H2O, O3, CO2, NOx, CFC, 
SO2, CH4, NH3, VOC, etc. 

  Can we use resonance 
fluorescence to detect them? 

  Quenching effects due to 
collisions make fluorescence 
impossible in lower 
atmosphere for molecules. 

  We still need spectroscopy 
detection - differential 
absorption and Raman lidars! 
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Raman Lidar for Water Vapor 

  H2O molecules exhibit specific spectra - fingerprints! 

  Raman lidar catches this ‘fingerprints’ and avoid the aerosol 
scattering in the Raman-shifted channel. Thus, only aerosol 
extinction will be dealt with in deriving H2O mixing ratio. 
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DIAL for Ozone in Two Decades 

Tsukuba (36N, 140E), Japan 
[Tatarov et al., ILRC, 2008] € 

Δσabs = σabs(λON ) −σabs(λOFF )
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Rayleigh + Raman Integration Lidar 

Density Ratio   Temperature 

+ 

Hydrostatic Equation 
dP = −ρgdz

)(
)()( 1  

)(
)()(  )(

z
rdrrg

Rz
zzTzT

oz

z

o
o ρ

ρ
ρ
ρ

∫+=

Ideal Gas Law 
RTP ρ=

[Keckhut et al., 1990]�
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Direction-Detection Doppler Lidar 

Fringe-Imaging 

Aerosol �
Scattering� Molecular�

Scattering�

In lower atmosphere, Rayleigh 
and Mie scattering experiences 
Doppler shift and broadening. 

However, there is no frequency 
analyzer in the atmosphere, so 
the receiver must be equipped 
with narrowband frequency 
analyzers for spectral analysis. 

Double-Edge Filter 
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Coherent Doppler Wind Lidar 
  “Heterodyne” Detection from aerosol scattering: the return signal is 
optically mixed with a local oscillator laser, and the resulting beat signal 
has the frequency (except for a fixed offset) equal to the Doppler shift.�

€ 

fbeat = fLO − fSig
= Δf + foffset
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 NOAA HRDL 
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Backscatter Cross-Section Comparison 
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Physical Process	

 Backscatter 
Cross-Section	



Mechanism	



Mie (Aerosol) Scattering	

 10-8 - 10-10 cm2sr-1	

 Two-photon process	


Elastic scattering, instantaneous	



Atomic Absorption and 
Resonance Fluorescence	



10-13 cm2sr-1	

 Two single-photon process (absorption 
and spontaneous emission)	


Delayed (radiative lifetime)	



Molecular Absorption	

 10-19 cm2sr-1	

 Single-photon process	



Fluorescence From 
Molecule, Liquid, Solid	



10-19 cm2sr-1	

 Two single-photon process	


Inelastic scattering, delayed (lifetime)	



Rayleigh Scattering	


(Wavelength Dependent)	



10-27 cm2sr-1	

 Two-photon process	


Elastic scattering, instantaneous	



Raman Scattering	


(Wavelength Dependent)	



10-30 cm2sr-1	

 Two-photon process	


Inelastic scattering, instantaneous	
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Lidar Data Retrieval 
  Lidar data retrieval varies with lidar systems & detections. 

€ 

NS (λ ,z) =
PL (λ)Δt
hc λ

⎛ 

⎝ 
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2(λ ,z)

Solutions:�
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RT =
NNorm ( f+,z) + NNorm ( f−,z)

NNorm ( f pk ,z)
=
σeff ( f+,z) + σeff ( f−,z)

σeff ( f pk ,z)

€ 

RW =
NNorm ( f+,z) − NNorm ( f−,z)

NNorm ( f pk ,z)
=
σeff ( f+,z) −σeff ( f−,z)

σeff ( f pk ,z)

Rayleigh normalization�
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Preprocess Procedure Read Data File�

PMT/Discriminator �
Saturation Correction �

Chopper Correction �

Subtract Background�

Remove Range�
Dependence ( x R2 ) �

Add Base Altitude�

Take Rayleigh Signal�
@ zR km�

Normalize Profile�
By Rayleigh Signal @ zR km�
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[Chu and Papen, Laser Remote Sensing, 2005] 
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Main Process Procedure 
  Compute Doppler calibration curves from physics�
  Compute actual ratios RT and RW from photon counts�
  Look up these two ratios on the calibration curves to infer the 
corresponding temperature and wind from isoline/isogram.�

170 K 

+60 m/s 

See poster 
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Lidar Observables 
  Lidar raw data are usually photon counts versus time of flight.  
  From photon counts, we retrieve directly the backscatter 
coefficient, density, temperature, wind, and depolarization factor. 
  What science can we study from these measured parameters? 
-- Thermal structure, dynamics, composition, and chemistry 
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  Temperature: a key fundamental parameter; essential to thermal 
structure, climate study, chemical reaction, tides, gravity waves, PW, 
polar mesospheric and stratospheric clouds, weather forecast, … 
  Wind: a key fundamental parameter; essential to dynamical 
structure, wave dynamics, fluxes, gravity waves, tides, PW, weather 
forecast, atmospheric coupling, … 
  Backscatter coefficient and depolarization factor: aerosols and 
clouds for their physical, optical, and microphysical characteristics 
(altitude, width, brightness, particle size, shape, and density) … 
  Density: minor species, composition, chemistry, dynamic test, … 
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CEDAR Science: Thermal & Dynamics 
  Perturbations of temperature, wind, or density  waves 
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[Gardner and Liu, JGR, 2007] 
Entire paper with Appendix 

  How to derive perturbations or how to estimate 
background? -- Various ways, here is a good one. 

  Vertical fluxes are used to characterize 
momentum, heat and constituent transport by 
atmospheric gravity waves (AGWs) when waves 
experience dissipation, due to instability, 
nonlinear wave-wave interaction and wave-mean 
flow interactions, and critical level filtering. 
  Vertical heat flux <w’T’>  is defined as the 
expected value of the product of the vertical wind 
and temperature perturbations.  
  Vertical fluxes of horizontal momentum <w’u’> 
and <w’v’> are defined as the expected value of 
the product of the vertical wind and zonal and 
meridional wind perturbations. 

  Vertical fluxes are very challenging to measure 
as they require good accuracy at high resolution 
(~2 min & 1 km), & extremely long averaging time 
to obtain statistically significant flux estimates. 
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CEDAR Science: Thermal & Dynamics 
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South Pole (90°S) SOR (35°N) Arecibo (18.35°N) 

[Pan and Gardner, 2003] [Chu et al., 2005] [Friedman and Chu, 2007] 

[Höffner and Lübken, 2007] 

Svalbard (78°N) 

Maui 
(20.7°N) 
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CEDAR Science: Meteor & Metal Species 

Meteor from extraterrestrial	



Na Lidar	


Beam	



[Chu et al., 2000]	



[Plane, 2003] 

Lidar detection of persistent meteor 
trails during Leonid Shower 1998 

Meteor ablation deposits metallic atoms 
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CEDAR Science: Metals, Chemistry, & Dynamics 

Lidar for CEDAR Science 

Comparison leads to two empirical 
corrections: (1) the downward 
vertical velocity in winter < 1 cm/s 
in the upper mesosphere;  
(2) the wintertime convergence of 
the meridional flow over the South 
Pole provides additional input of 
metallic species . 
-- [Gardner et al., 2005] 

South Pole 
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Rothera 
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PMC Hemispheric Difference & Fe/
PMC Heterogeneous Chemistry 

Southern PMC are ~ 1 km 
Higher than Northern PMC 
 Earth Orbital Eccentricity 

and Gravity Wave Differences 
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[Chu et al., JGR, 2003, 2006] 

Fe	



PMC	



South Pole	



Heterogeneous Removal of 
Mesospheric Fe Atoms by 

PMC Ice Particles Observed 
by the Fe Boltzmann Lidar 

[Plane et al., Science, 2004] 
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Lidar into Future and Space 
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Future lidar technology may lie in  
1. Solid-state resonance and Rayleigh 
Doppler lidar, such as the Fe Doppler lidar 
and Na Doppler lidar 
2. Extending lidar measurement range into 
the thermosphere, e.g., He, N2+, and O 
lidars 
3. Extending to whole atmosphere lidar by 
combining resonance Doppler lidars with 
Rayleigh/Mie/Raman Doppler lidar and 
DIAL 

4. Spaceborne resonance Doppler lidar 
5. …… 
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Laser Altimeter ICESat 
  First laser altimeter started in late 1960s.�

  Time-of-flight information from a lidar system can 
be used for laser ranging and altimetry from airborne 
or spaceborne platforms to measure the heights of 
surfaces with high resolution and accuracy.�

  Apollo laser altimeter in 1971 mapping lunar surface 
was the first ever lidar in space. ICESat/GLAS provide 
information on Earth topography and ice coverage.�
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Courtesy of Waleed Abdalati 
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Conclusions 
   Lidar has made significant contributions to atmosphere and space 
research owing to its high capabilities to simultaneously measure wind, 
temperature, density, aerosols/clouds, and minor species with high 
accuracy, precision, and resolution for both day and night.  

  New lidar technologies are being proposed and developed to further 
improve the measurement accuracy, precision, and resolution, the 
measurement range and capability as well as the mobility to enable new 
scientific endeavors.  

   Many open questions remain in atmosphere and space research. 
Among them the atmospheric coupling and tracking gravity waves from 
the source regions to the breaking areas are being considered. The whole 
atmosphere lidar and the space-borne MLT lidar are on the horizon. 

  Lidar field definitely needs fresh blood, especially creative students 
and young researchers … 

Standing on the shoulder of giant, we are aiming for the future …… 
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