Using Active Experiments to SEE and HEAR the Ionosphere

> Paul A. Bernhardt Plasma Physics Division Naval Research Laboratory Washington, DC 20735

Plus Major Contributors

CEDAR Prize Lecture Boulder, Colorado 22 June 2010

Remote Sensing with Active Experiments

- Active Experiments
 - Chemical Releases
 - High Power Radio Waves
- Enhanced Ionospheric Measurements
 - Sporadic-E Layers
 - Standard Techniques: Radar Backscatter, Radio Sounding, TMA Trails, Tomography
 - Active Techniques
 - Heater Excited Airglow Radiation (HEAR)
 - Rocket Exhaust Seeding of Irregularities
 - Equatorial Irregularities
 - Standard Techniques: Airglow, Backscatter and Incoherent Scatter, Radio Beacons
 - Active Techniques
 - Chemically Induced Electron-Ion Recombination
 - Artificially Enhanced Airglow
 - Mid- and High-Latitude Density, Temperature, Composition, and Irregularities
 - Standard Techniques: Backscatter Radar and Radio Scintillations
 - Active Technique
 - Field Aligned Irregularity Glow with HF Excitation
 - Enhanced Backscatter with Hypersonic Exhaust Interactions
 - Stimulated Electromagnetic Emissions (SEE)
 - Plasma Wave Generation and Propagation
 - MHD Waves from Space Shuttle OMS Burn
 - Ion Acoustic Wave Turbulence from Streaming Exhaust

Chemicals Used in High Altitude Release Experiments

Purpose	Materials	Optical Emissions	Fastest Rate	Reaction
Plasma Clouds: Photo-ionization	Li, Na, Sr, Cs, Ba, Eu, U	553.5 nm (Ba) 455.4 nm (Ba⁺)	0.05 s ⁻¹ (Ba) 0.005 s ⁻¹ (Eu) 0.00029 s ⁻¹ (Li)	Ba + hν → Ba⁺ + e⁻
Plasma Clouds: Associative Ionization	Sm, La, Nd, Ti	Molecular Bands of SmO (656 to 570 nm)	2 x 10 ⁻¹¹ (SmO)	Sm + O → SmO+ + e- + 0.39 eV
Plasma Holes: Electron Attachment	SF ₆ , CF ₃ Br, Ni(CO) ₄	777.4 nm (SF ₆)	2.2 10 ⁻⁷ cm³/s (SF ₆)	$SF_6 + e \rightarrow SF_5^- + F$ - 0.25 eV $SF_5^- + O^+ \rightarrow SF_5 + O^*$ + 9.91 eV
Plasma Holes: Ion- Molecule Charge Exchange	H ₂ , H ₂ 0, CO ₂	630 nm (CO ₂)	3.2 10 ⁻⁹ cm ⁻³ (H ₂ 0)	$H_2O + O^+ \rightarrow H_2O^+ + O$ $H_2O^+ + e^- \rightarrow OH^* + H$
Neutral Wind Tracer	Al, NO, Na, Al(CH ₃) ₃ , Fe(CO) ₃ , Ni(CO) ₄	Molecular Bands of AIO (484, 508, 465, 534 nm)		$\begin{array}{c} AI(CH_3)_3 + O \to AIO^* \\ + \dots \end{array}$

NRL-0402 SIMPLEX Shuttle Ionospheric Modification with Pulsed Localized Exhaust **Experiment Concept**

Radar Diagnostics of Artificial Plasma Turbulence

Dedicated Burns Scheduled Through DoD Space Test Program with NASA Johnson Spaceflight Center

Objective: Investigate Plasma Turbulence Driven by Rocket Exhaust in the lonosphere Using Ground Based Radars

- Remote Sensing of Exhaust Flow Sources
- Understand Evolution of Ionospheric Disturbances
- Develop Quantitative Models of Plasma Turbulence

Description: Fire OMS Engines Over Ground **Diagnostic Radar Sites**

- Radar Observatories
 - Millstone Hill, Massachusetts
 - Arecibo, Puerto Rico
 - Kwajalein, Marshall Islands
 - Jicamarca, Peru
 - JORN. Australia
- Radar Data
 - **Enhanced Backscatter**

 - Radar Doppler Spectra Identification of Ion Beam Plasma Waves
 - Radio Scintillations
- Optical Data
 - Scattered Sunlight from Exhaust Particles
 - Chemical Reaction Airglow

Plasma Physics Division

Naval Research Laboratory

Shuttle Exhaust Ion Turbulence Experiment (SEITE)

Past, Current and Future HF Ionospheric Modification Facilities

Active Studies of the E-Layer

Sporadic-E and Intermediate Layers Arecibo, 7 May 1983

Tri-Methyl Aluminum (TMA) Trail for Determination of Wind Shears

Image and Data Courtesy M.F. Larsen, Clemson

Quasi-periodic Echoes -- (SEEK-2) Rocket/Radar Campaign in Japan

Uchinoura, Japan – – SEEK 2 (S310-31) 3 August 2002

Electric fields reveal quasi-periodic structures. (Pfaff et al., 2005)

North Observing Site (Kochi) Looking South

Larsen et al. [2005]

Neutral Wind trail reveals Kelvin-Helmholtz "whorls."

Radar echoes show quasi-periodic patterns (Saito et al., 2005)

Tomographic Study of E-Region Irregularities

Geometry for HF OTHR Scatter Experiment with the Launch of STS-118

40 ⁰ N 35 ⁰ N	Tx ROTHR VA										
		T0 + -	400		Transmitter	Receiver	Launch Site				
Kx Ft.	Stewart GA	T0 + 300			Chesapeake Virginia	Fort Stewart Georgia	Cape Canaveral Florida				
30°N Launch	T0 +	200			1050 km Range to Launch	402 km Range to Launch	0 km Range to Launch				
ł					199.5° Azimuth to Launch	163.5° Azimuth to Launch					
25°N		~			$167^{\circ} \pm 50^{\circ}$ Azimuth	$165^{\circ} \pm 50^{\circ}$ Azimuth					
85°W	80°W	75 ³ W	70°W	65°₩	Target Illumination	Target Viewing					

Solid Rocket and Main Engine Burns of Space Shuttle Endeavor for STS-118

Beam Left of Boresight Showing the Ionospheric Scatter from Rocket Transiting E-layer at 22:36:26 on 8 August 2007

range bin -6 range bin -5 range bin -4 range bin -3 range bin -2 range bin -1 range bin 0 range bin 1 range bin 2 -0.60 msec -0.50 msec -0.40 msec -0.30 msec -0.20 msec -0.10 msec 0.00 msec 0.10 msec 0.20 msec

F-Layer and Overdense Intermediate Layer Arecibo IRS Data, 23 Jan 1998 (FTD)

HF Electromagnetic Waves Interacting with a Plasma Density Enhancement

References:

Bernhardt et al., **J. Geophys. Res**., (108), 1336-1346, 2003. Gondarenko et al., **J. Geophys. Res**., (108), 1470-1480, 2003.

Two Color (Red/Green) Composite Image of Radio Induced Aurora Arecibo, Puerto Rico 23 January 1998

Field Line Connecting

Arecibo and Argentina

Active Studies of the Equatorial Ionosphere

Simulations of Radio Scintillations and Optical Intensities

Electron Density

630 nm Volume Emission

Combining Radio Scintillations and Plasma Bubble Images

Source: Ledvina, B. M., and J. J. Makela, Geophys. Res. Lett., 32, 2005

SIMPLEX Burn Viewed from Kwajalein 25 July 1999

GPS Pierce Point Trajectories for the Hours after the STS-93 SIMPLEX Burn Over Kwajalein

GPS TEC from Kwajalein Receiver for 4 Hours after the STS-93 SIMPLEX Burn Over Kwajalein

GPS TEC from Samoa Receiver for the Hours after the STS-93 SIMPLEX Burn Over Kwajalein

SIMPLEX K3

SIMPLEX K3 – STS 122

- OMS Burn 08 February 2008
- 12:43 UT (23:53 LT)
- Spread-F Event
- ALTAIR not available

Lowell

8.250

N/A N/A

N/A

N/A

N/A

2.55

29.18

3.54 N/A 260.0 260.0

N/A

N/A

293.2

EoF2

EoF1

EOE

foEp fxI

foEs

fmin

M(D)

h`F2 h`E

h`Es

hmF2

h`

MUF(D)

EoF1r

SIMPLEX K3

SIMPLEX K3 – STS 122

- OMS Burn 08 February 2008
- 12:43 UT (23:53 LT)
- Spread-F Event
- ALTAIR not available
- Region of enhanced airglow somewhat bound by existing ionospheric structure

SIMPLEX K3

Kwajalein Atoll 12:44:03 UT 6300 Å

Kwajalein Atoll 12:45:05 UT

5577 Å

~10km Wide Field Aligned Irregularities

Structure in 557.7 nm observations

Mid- and High-Latitude F-Region Irregularities

NRL SIMPLEX-5 Burn on STS-119, 27 March 2009

Artificial Aurora Experiments

- High Latitude Artificial Aurora
 - Not Visible with Unaided Eye
 - Primarily Red-Line and Green-Line Emissions
 - Maximum Optical Emissions with HF Beam Aligned with Geomagnetic (B) Field
 - Illumination of Natural Field Aligned Irregularities

Drifting Irregularities View Using Artificially Generated Optical Emissions Excited by HAARP

- HAARP antenna beam pointed at magnetic zenith (240°Az, 85° Elev)
- Narrow field of view camera at HIPAS (300 km NW of HAARP Facility).
- Narrowband filter at 630 nm
- Natural Field Aligned Irregularities Modulate Artificial Aurora
- Electron Acceleration Along B

Plasma Wave Generation

- Electromagnetic Pump Wave $(\omega_{\rm P})$ $-\nabla^2 \mathbf{E}_p + \nabla (\nabla \cdot \mathbf{E}_p) - \mathbf{k}_p^2 [\mathbf{I} + \mathbf{X}_{ap}] \cdot \mathbf{E}_p = 0$
- Scattered Electromagnetic Wave (ω_S)

 $-\nabla^{2}\mathbf{E}_{s} + \nabla(\nabla \cdot \mathbf{E}_{s}) - \boldsymbol{k}_{s}^{2}[\mathbf{I} + \mathbf{X}_{es}] \cdot \mathbf{E}_{s} = \boldsymbol{k}_{s}^{2} \mathbf{\bar{X}}_{eL} \cdot \mathbf{E}_{p}$

- Low Frequency Ion Velocity Waves (ω_L)
 - Ion Acoustic/Slow Magnetosonic
 - Electrostatic Ion Cyclotron)

$$\nabla(\nabla \cdot \mathbf{\bar{v}}_{i}) + \frac{\boldsymbol{\omega}_{L\pm}^{2}}{c_{IA}^{2}} \left(U_{i} \mathbf{\bar{v}}_{i} - i \frac{\boldsymbol{\Omega}_{i} \times \mathbf{\bar{v}}_{i}}{\boldsymbol{\omega}_{L\pm}^{2}} \right) = \frac{i \boldsymbol{\omega}_{L\pm} q_{e}^{2}}{4 m_{e} m_{i} \boldsymbol{\omega}_{P}^{2} c_{IA}^{2}} \nabla(\mathbf{E}_{T} \cdot \mathbf{E}_{T}) \text{ where } \mathbf{E}_{T} = \mathbf{E}_{P} + \mathbf{E}_{S}$$

• Result: Parametric Decay Instability

$$\omega_P = \omega_S + \omega_L$$
$$\mathbf{k}_P = \mathbf{k}_S + \mathbf{k}_L$$

Pairs of Waves Produced by

Parametric Decay of Strong Pump Waves

Daughter Wave #2→	EM	ΕP	UH	EB	IA	EIC	LH	IB	W	ZFE	ZFI	FAI
 ★Daughter Wave #1												
Electromagnetic (EM)					EM	EM						
Electron Plasma (EP)					EM/EP							
Upper Hybrid (UH)							UH					EM
Electron Bernstein (EB)								EB				EM
Ion Acoustic (IA)												
Electrostatic Ion Cyclotron (EIC)												
Lower Hybrid (LH)												
Ion Bernstein (IB)												
Magnetosonic (M)												
Zero Frequency Electron (ZFE)											EM	
Zero Frequency Ion (ZFI)												
Field Aligned Irregularities (FAI)												

Waves in a Fluid Plasma for Oblique Propagation

Plasma Wave Mode **Characteristic Branches for Typical Ionospheric Parameters** $\Omega_e = (2\pi) \ 1.43 \ 10^6 \ Rad \ / s$ $\omega_{pe} = 2 \ \Omega_e Rad \ / \ s = (2\pi) \ 2.86 \ 10^6 \ Rad \ / \ s$ $\omega_{UH} = (2\pi) \ 3.2 \ 10^6 \ Rad \ / s$ $\omega_{LH} = (2\pi) 7460 \ Rad \, / s$ $\Omega_i = (2\pi) 48.7 Rad / s$ $n_e = 1.01 \ 10^{11} m^{-3}$ $T_e = 2500K$ $T_{i} = 800K$ $V_{A} = 8.75 \ 10^{5} \, m \, / \, s$ $c_{s} = 1590 \ m/s$ $\rho_e = 0.022 \ m$ $\rho_i = 3.64 \ m$

Parametric Decay Instabilities and <u>Stimulated Electromagnetic Emissions</u>

Parent Wave 0	Daughter Wave 1	Daughter Wave 2	Instability Name	Observed for HF
Electromagnetic Wave	Electron Plasma Wave	Ion Acoustic Wave	Parametric Decay	Yes Radar/SEE
Electron Plasma Wave	Electron Plasma Wave	Ion Acoustic Wave	Electron Decay	Yes Radar/SEE
Electromagnetic	Electron Plasma	Zero Frequency Ion	Oscillating Two-Stream	Yes
Wave	Wave	Wave		Radar/SEE
Electromagnetic	Electromagnetic	Ion Acoustic Wave	Stimulated Brillouin	Yes
Wave	Wave		Scattering	SEE
Electromagnetic Wave	Electron Plasma Wave	Electron Plasma Wave	Two-Plasmon Decay	No
Electromagnetic	Electromagnetic	Electron Plasma	Stimulated Raman	No
Wave	Wave	Wave	Scattering	
Upper Hybrid Wave	Upper Hybrid Wave	Lower Hybrid Wave	Lower-Hybrid Decay	Yes SEE
Electron Plasma	Electron Plasma	Electrostatic Ion	Stimulated EIC Brillouin	Yes
Wave	Wave	Cyclotron Wave	Scatter	Radar/SEE
Electron Bernstein	Electron Bernstein	Ion Bernstein Wave	Electron Bernstein	Yes
Wave	Wave		Decay	SEE

BHAARP Instrument Experiments with the PERCS

- PERCS Operational Utility
 - Absolute Calibration of HAARP Antenna Pattern from 2.8 to 10 MHz
 - Precise Measurements of Performance for HF Radars that Support HAARP

24, 635-638, 1997.

Plate 2. Detail of the electron density, Langmuir waves around 5.1 MHz and low-frequency ion acoustic waves near the HF reflection level. The Langmuir waves and ion acoustic waves seem to be trapped or guided by the density cavities. Spectra of low-frequency electric fields are measured between sensors EF1 and EF4 of Figure 2.

Stimulated Electromagnetic Emissions (SEE)

- SEE Generation by High Power Radio Waves
 - Mode Conversion on Field Aligned Irregularities
 - Parametric Decay of Strong Wave to Two Modes
- Ionospheric Measurements by Low Frequency SEE
 - Stimulated Brillouin of Ion Acoustic Waves → Electron Temperature
 - Stimulated Brillouin of Electrostatic Ion Cyclotron Waves → Ion Mass
 - Stimulated Ion Bernstein Waves → Electron Acceleration Resonance

Upper Hybrid and Lower Hybrid Wave Generation is Complex

SEE Observations Near the Third Electron Gyro Harmonic SIERRA Site: Glennallen, AK, 20 March 2004

Stimulated Brillouin Scatter with Ion Acoustic Wave Generation is Simple

-100.

0.

100.

200.

Date 2008/10/24, Time 19:37:50

Determination of Electron Temperature

at UH Resonance Altitude

Assumptions

24 October 2008

т 🥆 3 Т.	Time (UT)	19	:48	19:58		
	Line	SBS-2	SBS+2	SBS-2	SBS+2	
S_e, S_i KIOWII	f _{IA} (Hz)	-30.56	30.56	-29.17	27.78	
$\omega_0 = (\omega_p + \Omega_e)^{1/2}$	C _{IA} (m/s)	1780	1780	1690	1580	
Ion Acoustic Speed	Te (K)	3506	3506	3176	2866	

$$c_{IA} = \sqrt{\frac{\gamma_e T_e + \gamma_i T_i}{m_i}}$$
 where $\gamma_e = 1$ and $\gamma_i = 3$
QL Solution

$$T_{e} = \frac{m_{i}c^{2}\omega_{IA}^{2}}{(\gamma_{e} + \gamma_{i}/3)4\Omega_{e}\omega_{0}} \frac{\Omega_{i}^{2} - \omega_{0}^{2}}{\Omega_{i}^{2}Cos^{2}\theta - \omega_{0}^{2}} \frac{\omega_{0} + \Omega_{e}Cos\theta}{\omega_{0}Cos\theta + \Omega_{e}}$$

SBS with EIC Generation Yields Ion Mass

Electrostatic Ion Cyclotron Waves Excitation by at 2nd Electron Gyro Harmonic

- Ion Cyclotron Frequency = 48.6 Hz
- 40 dB On/Off Fluctuations in Amplitude
- Only Observed Oblique Pointing Angle
- Search for Narrowband Ground ELF Signal

Stimulated Ion Bernstein (SIB) Generation by Tuning to the Second Electron Gyro Frequency

Electron Acceleration, ES and EM Wave Generation

Electron Cyclotron Resonance at Twice the Electron Gyro Frequency

HAARP Enhanced Airglow, Todd Pedersen, AFRL

Recent Measurements of Artificial Electrostatic Waves in the lonosphere

- Electrostatic Waves Generated By High Power Radio Waves.
 - Stimulated Low Hybrid Waves Common
 - Stimulated Brillouin Scatter (SBS) is the strongest SEE Mode Sometimes SBS Emissions is Stronger than HF Pump Return SBS by Overdense High-Power HF in the Ionosphere Discovered by Norin et al. [*PRL*, 2009] in February 2008. This work published by Bernhardt et al., *Annales Geophysicae*, 2009. SBS Produces Extremely Strong SEE Emissions up to 10 dB Below the HF Pump Return
 - SBS Comes from Both the *Reflection Region* and the *UH Resonance Height*
 - The SBS Ion Acoustic Frequency
 - Offset from the Pump Frequency
 - Electron Temperature Measurements from the UH Resonance Region Validation Possible with ISR Measurements of Te at EISCAT or Arecibo Heating Sites
 - The SBS Electrostatic Ion Cyclotron Frequency Precisely at Ion Gyro Frequency
 - Provides Measurement of Ionospheric Ion Composition
 - Paper Just Published [PRL, 2010].
 - Stimulated Ion Bernstein Scatter Discovery First SEE Observations at HAARP Slight Offsets from Ion Cyclotron Frequency Harmonics
 - Many Modes with Unknown Origin
 - Provides Links to Artificial Airglow Generation

C/NOFS Orbit 6973 -- July 30, 2009 (Day 211)

STS-127 OMS Burn Observed by C/NOFS

MHD Waves Excited by Rocket Burns

• Magnetized Plasma Driven by a Neutral Pulse

$$\frac{\partial n}{\partial t} + n_0 \nabla \cdot \mathbf{v} = 0, \quad \frac{\partial \xi}{\partial t} = \mathbf{v}, \quad \frac{\partial \mathbf{v}}{\partial t} = -\frac{\nabla (nkT)}{n_0 m_i} + \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}_0}{\mu_0 n_0 m_i} + \mathbf{v}_{in} (\mathbf{v}_n - \mathbf{v})$$
$$\frac{\partial nkT}{\partial t} - \gamma kT_0 \quad \frac{\partial n}{\partial t} = 0, \quad \mathbf{E} + \mathbf{v} \times \mathbf{B}_0 = 0, \quad \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}, \quad \mathbf{B}_0 = B_0 \mathbf{b}$$

STS-129 OMS Burn Observed by C/NOFS

Conclusions

- Active Experiments Can "Illuminate" the Physics of the Ionosphere
 - High Power Radio Waves Excite Optical and Radio Emissions
 - Irregularities Images
 - Ion Composition Measurements
 - Ion Sound Speed and Plasma Temperature Determination
 - Conditions for Resonant Acceleration of Electrons
 - Rocket Exhaust is a Remote Sensing Tool
 - Enhance Glow from Plasma Irregularities
 - Triggering of Instabilities
 - Ion Beams
 - Small Scale Field Aligned Irregularities
 - Large Scale Plasma Bubbles
 - Stimulation of Plasma Wave Modes
 - MHD Waves for Large Distance Propagation
 - Local Enhancements in Plasma Wave Turbulence
- Active Experiments Complement Passive Remote Sensing Tools