New findings of the response of thermospheric
composition to low-moderate geomagnetic activity
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Motivation
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weaker background in solar minimum leads to a stronger
response to geomagnetic forcing



Question: does the neutral composition in the
thermosphere also respond to weak geomagnetic activity
(non-storm, Kp<=4) during solar minimum???



Global-scale Observation of Limb and Disk (GOLD) provides 2D images of
> O/N, over a large area (70°S-70°N, 120°W-30°E) in the same time range
(6:10-22:40 UT) everyday (More details in Eastes et al., 2017 and 2020)




Selection rules

Two consecutive quiet days, with AE disturbance less than 250 nT and daily
average Kp<1

From the third day, there are some geomagnetic disturbances (AE<1000 nT), but
they are weaker than a storm (Kp<5)

Calculate corresponding > O/N, percentage difference (PD)
[(disturbed-quiet)/quiet].
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Data-Model comparison for case 2
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Temporal evolution of disturbed ) O/N, in case 2 (similar to process described in Prolss, 1980)
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See more details in Cai et al., 2020 GRL



The above work from Cai et al., 2020 (GRL) raises another question

What happens during geomagnetically quiet time (Kp<2): are there
still composition and ionospheric density disturbances?

Now we make the rules stricter by setting AE<250 nT for the whole day, and Kp<2 (quiet (Q)
conditions), to see what happen to > O/N, and TEC,

We pick the case where three quite days satisfy quiet conditions, and then calculate the % Diff
between third and second days. The first quiet day is not used so that the possible influence of
previous geomagnetic activity can be avoided.
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See more details in Cai et al., 2021 GRL



Summary

1 Weak geomagnetic activity (2<Kp<=4) can generate strong daytime responses in the
thermospheric > O/N2 (~ -30% and up to 12-hour) at mid and low latitudes during solar
minimum.

2 During some geomagnetically quiet periods (Kp<2), GOLD observed similar strong localized
daytime ) O/N, variations (sustained ~10 hours) at mid-latitudes

3 lonospheric TEC depletions are also seen in the region of ) O/N, depletion

4 Model simulations are consistent with observations and demonstrate that the observed
> O/N, depletions are caused by geomagnetic activity
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