Using HAARP to build a Subauroral Geophysical Observatory in Gakona AK

- Gakona AK 62.39 deg, 145.15 deg
- **33 acre phased HF transmitter array**
- 5 x 4000 hp diesel engines; 12MW
- 2.8 to 10 MHz; 3.6 MW
- \$290M (half Congressional earmarks + half AFRL, ONR & DARPA)

Bob McCoy, Jessica Matthews Geophysical Institute University of Alaska Fairbanks Dave Hysell Cornell University

Permitted to 12 MW 5 x 2500kW (4000hp) diesel engines

HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM

University of Alaska Fairbanks

High-frequency Active Auroral Research Program (HAARP)

HF Ionospheric Heating

Magnetic Field Lines

Radiation Belt

ULF, ELF, VLF wave injection

Rotating Heating beams **Duct creation** Airglow Wave generation **Multiple** Currents beams Chemistry Submarine **Plasma resonances Communication Instabilities** Turbulence

2013: Two National Research Council Studies Involving HAARP

- 2013 Decadal Survey in Solar and Space Physics
 - Priority Fully realize the potential of ionospheric modification techniques through collocation of modern heating facilities with a full complement of diagnostic instruments including incoherent scatter radars. This effort requires coordination between NSF and DOD agencies in planning and operation of existing and future ionospheric modification facilities.

- NRC Workshops do not provide recommendations but report contains 72 pages of HAARP science
- Themes: Geospace and space weather; Stimulated emission and radiation belts; radio science, communications, and radar

- Strong recommendation to co-locate incoherent scatter radar

http://www.nap.edu/booksearch.php?booksearch=1&term=sale&record_id=18620

HAARP Compared to EISCAT, Sura & Arecibo

Alaska Ionospheric Infrastructure

Diagnostics			Diagnostics		
Organization	PI	Instruments	Organization	PI	Instruments
Johns Hopkins APL	Syau- Yun Hsieh	GPS Septentrio Receiver Optics	UAF	Rich Collins	LIDAR
Nagoya University (JAPAN)	Shin Oyama	Riometer Magnetometer All Sky Camera	NRL	Paul Bernhardt	TCI-540 Transmitter
Cornell	Dave Hysell	Photometer Astra CASES GPS Receiver	AVO	John Paskievitch	WAZA
University of		THEMIS GBO	UAF HAARP	HAARP	Digisonde
California Berkeley	Harald Frey		UAF GI	Don Hampton	Magnetometer All Sky Imager
US Array, IRIS, EarthScope	Bob Woodward	Seismometer	UAF HAARP	HAARP	ITS-30 Satellite Reciever
University of Colorado	Jade Morton, Steve Taylor	GNSS(1/3) GNSS (2/3) GNSS (3/3)	UAF GI	Jeffrey Freymueller	GNSS Crustal Deformation
MIT	Don Hampton	GPS Septentrio Receiver	UAF HAARP	HAARP	HF Spectrum Reciever and Spectrum Analyzer
Reeve Obs	Whitham Reev	TCI Ant Lightning Detection Weather Station	UAF HAARP	HAARP	HF Dipole

Modular UHF Ionospheric Radar (MUIR)

Naturally Inspiring.

Snapshot of a real-time composite space-weather status display from the night of October 25, 2019 during a G2 class magnetic storm, and shortly before a substantial increase in magnetic activity began over Alaska. The main panel shows SDI winds, a mapped all-sky camera image, and PFISR ion convection arrows.

Previous HAARP Results

Chris Fallen Experiment: First simultaneous high-power HF radio aurora and SSTV broadcast, Sep 2017

Replying to @ctfallen

05:41, 05:44 and 05:53 recorded by my MixW program. Nice reception, indeed, from Victoria, BC

12:10 AM - 26 Sep 2017

SAGO – A great place to study **STEVE**

Don Hampton

Four snapshots from a filtered all-sky imager at Gakona showing the dynamics of a STEVE event and associated picket fence structures. The two colors are the auroral red line (630.0 nm) and green line (557.7 nm) of atomic oxygen. In this display N is to the bottom and E is to the right, as if looking up in the sky. The images show that SAGO is an ideal site for examining these intriguing features.

Strong Thermal Emission Velocity Enhancement (STEVE)

Subauroral Geophysical Observatory (SAGO) 2021 NSF Award

Naturally Inspiring.

Iron Resonance Wind-Temperature LIDAR (IRWTL) for HAARP

- Solid-state laser 372 nm will be built at PFRR with existing IRWTL before being moved to HAARP
- Collaboration UAF, GATS and German Aerospace Center (DLR) Collins, Thorsen, Li, Williams & Kaifler
 - Combining lidar & radar to yield accurate D-region electron density estimates and ELF/VLF generation processes
 - PMC-PMSE ice particle charging processes
 - Processes determining E-region winds
- Postdoc Opportunity Contact Richard Collins at rlcollins@alaska.edu

NSF #204862

Reinstitute Polar Aeronomy and Radio Science (PARS)

- Faculty & graduate student
- Classes, tours & HAARP experiments
- Alaska experience

Naturally Inspiring.

