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An Observation about Energy

It is important to realize that in physics today,
we have no knowledge of what energy is.

There is a fact, or if you wish, a law, governing all
natural phenomena that are known to date.
There is no known exception. It is exact as far as we know.
That law is called the conservation of energy.

Richard P. Feynman, in Six Easy Pieces
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Earth’ s Mesosphere and Lower Thermosphere
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What makes Mesosphere and Lower Thermosphere (MLT)
Interesting and Worthy of Study?

* Blend of classical photochemistry and aeronomy

o Ozone is still the main radiative drive in the mesosphere and up to 90 km

o Solar UV variability and particle precipitation influence thermal structure and composition
* Atomic species become significant

o Low density means long lifetimes for atomic oxygen and hydrogen

o Remarkable influence on the energy budget of the 80-100 km region and above

* MLT is part of the complex lonosphere-Thermosphere-Mesosphere system

* Climate change due to increasing CO, in the MLT influences the entire
perceptible atmosphere above it — to the edge of Space!
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Sounding of the Atmosphere using Broadband Emission Radiometry

SABER Instrument

e Limb viewing, 400 km to Earth surface

e Ten channels 1.27 to 16 um

e Over 30 routine data products including
temperature, constituents, and rates of
radiative heating and cooling

e Over 98% of all possible data collected

e Focus on energetics of MLT region

e Nearly 20 years of on-orbit operation!

e Approved through September 2023

SABER Instrument

75 kg, 77 watts; 4 kbs

104 cm
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The Hypothesis of Climate Change Science

For more than a century, we have been aware that changes in the composition of the
atmosphere could affect its ability to trap the sun’s energy for our benefit. We now
have incontrovertible evidence that the atmosphere is indeed changing and that we
ourselves contribute to that change. Atmospheric concentrations of carbon dioxide are
steadily increasing, and these changes are linked with man’s use of fossil fuels and

exploitation of the land. Since carbon dioxide plays a significant role in the heat

budget of the atmosphere, it is reasonable to suppose that continued increases would

Verner E. Suomi

affect climate.

From “Carbon Dioxide and Climate: A Scientific Assessment,” aka “The Charney Report”, June, 1979

Article on 40t anniversary of “Charney Report:”
https://phys.org/news/2019-07-charney-years-scientists-accurately-climate.html
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Carbon Dioxide at Earth’s Surface and in the MLT
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* CO, is increasing at the surface and in the MLT

* Rate of CO, increase is comparable in both locations
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Consequences of CO, Increase: Simultaneous Surface Warming, MLT Cooling
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https://data.giss.nasa.gov/gistemp/graphs_v4/ Garcia et al., JGR, 2019
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Role of CO, in the MLT Heat/Energy Budget
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Energy Budget of the Mesosphere and Lower Thermosphere

* To understand role of CO, in the MLT climate we must examine the
‘heat budget’ of the MLT

* The energy (heat) budget is an accounting of all the known, significant sources and
sinks of energy

* We will see that CO, “plays a significant role in the heat budget” of the MLT and
therefore it “is reasonable to suppose that continued increases would affect” the
climate of the MILT

* We will examine the heat/energy budget largely through the evaluation of radiative
heating and cooling rates

* These express the rate, in Kelvin per day, at which radiation is working
to warm or cool the atmosphere
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What are Radiative Heating and Cooling Rates?

e Radiative heating/cooling rates are really just an expression of the first law of
thermodynamics

e The first law is just an expression of conservation of energy:

Heating/cooling rate, K/day

0Q(z) oC 0T(z) «
ot p ’?\at
Energy gain or loss, per Density Specific heat @
unit volume, per time constant pressure

e Simple example: Heating by absorption of solar radiation by O, (e.g., Ly-a)

aQ
ot

oT

S==J*0, % () =pC, >

* Use SABER (and SORCE) to determine 0Q/dt and 0T/dt in the MLT

7/12/21

CEDAR Prize Lecture

13



Elements of the Energy Budget in the M/LT

< Energy In

Solar Heating
Ozone Hartley

Ozone Huggins, Chappuis Bands
Oxygen A, B, y bands

Oxygen Schumann-Runge Continuum
Oxygen Lyman-a

Oxygen Schumann-Runge Bands
Carbon dioxide @ 2.0, 2.7, 4.3 um

Chemical Heating

H+O;>O0H+O0,
H+O,+M =2 HO,+M
OH+0—>H+0,
O+HO,2>0H+0,
0+0;220,
O+0,+M=>0;+M
O+0+M—>0,+M

<

Energy Out —

Infrared Cooling
Carbon Dioxide @ 15 um

Ozone @ 9.6 um
Water Vapor (far-IR)

e Over 30 Terms!

* All Measured, Derived, or Computed with SABER
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Solar Heating Rates (K/day) in the M/LT
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Predicted Effects of Chemical Potential Energy

110

T - | T
Garcia-Solomon 2-D Model

100

90

80

Approximate Altitude

70

Mlynczak and Solomon, GRL, 1991
60 | l ] ]

o 2 4 6 8
Heating Rate (K/day)

Exothermic Chemical Reactions are the Dominant Source of Heat in the Mesopause Region
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SABER Confirms Role Chemical Heating in Mesopause Region

Global Annual Solar and Chemical Heating, 2007 90NS (V5.3 V1inew)
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CO, Radiative Cooling
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CO, emission at 15 um cools the MLT
These are vibration-rotation transitions

CO, possesses a complex vibrational
structure

At least 9 different vibration-rotation bands
are important

These involve fundamental and hot bands

Also involve minor isotopes that are less
than 1% of the total CO, amount
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CO, Radiative Cooling Rates in the MLT
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SABER Global Annual Mean Energy Balance — 2004
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* CO, does indeed “play a significant role in
the heat budget” of the mesosphere

* A near balance with total computed heating
on global annual mean timescales is observed

* Energy is conserved

* So how does increasing CO, cool the
mesosphere?
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Energy Budgets, Energy Balance, Energy Conservation

How does increasing CO, cause the MLT to cool?
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How Does CO, Cool the Mesosphere and Lower Thermosphere?

Option A

e CO, is increasing in the MLT
* CO, cools the MLT through emission of infrared radiation

* Doesn’t more CO, mean “more cooling” (i.e., more infrared radiation), and hence, T decreases?

Option B

* But the atmosphere is observed to have a decreasing temperature
* By fundamental infrared physics, objects emit less infrared radiation at lower temperatures

* Doesn’t a colder atmosphere mean less infrared radiation from CO, as CO, increases?

* Which Option is correct?
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How Does CO, Cool the Mesosphere and Lower Thermosphere?

Option A

e CO, is increasing in the MLT
* CO, cools the MLT through emission of infrared radiation

* Doesn’t more CO, mean “more cooling” (i.e., more infrared radiation), and hence, T decreases?

Option B

* But the atmosphere is observed to have a decreasing temperature
* By fundamental infrared physics, objects emit less infrared radiation at lower temperatures

* Doesn’t a colder atmosphere mean less infrared radiation from CO, as CO, increases?

* Which Option is correct? --- NEITHER!

Why is this?
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Infrared Radiation Exiting the MLT

Infrared radiation is the “exhaust” of the climate system

IR radiation expels the energy that is deposited into the MLT system

The only way to change (+ or -) the energy out of the MLT is to change the

energy coming in

On climate timescales (annual to decadal) the energy leaving the MLT has to
balance the energy coming into it (energy has to be conserved)

 The MLT cannot be made to radiate more or less energy by changing its

composition

* |f there is no long-term change to the energy input to the MLT, there will be no
long-term change to the energy output from the MLT
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Using the Cooling Rates “in Reverse” to compute Energy Fluxes

* First law of thermodynamics:

00(z) _ c dT (z)
or PP a¢

 Use derived cooling rates (K/day) to get 00/0¢ (W/m3)

* Vertically integrate 0Q/dt w/r/to pressure get net flux of IR exiting MLT:

oT
(tp) dp

C p2
Flux(Wm™2) = ——pj
g 41 0

e What Does the Satellite Record Show?
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Daily Global Power (W) Exiting the MLT
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What is the long-term trend
in energy?
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No Trend in Infrared Energy Leaving the MLT
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How Does CO, Cool the Mesosphere and Lower Thermosphere?

The radiance ( R, ) emitted from a layer of atmosphere is the product of
two terms, €,and J,,

The emissivity ( €, Jdepends on the CO, amount

The source function ( J, ) depends on the temperature

In the long-term, if the energy into the system is constant, R, must be
constant —
R, =¢&,xJ,

Adding CO, increases ¢, . If R, is constant, J, (i.e., temperature) must
decrease to keep it so

Thus, adding CO, allows the MLT to radiate
the same amount of energy, but at a lower temperature

Disclaimer: Do not apply this concept to the troposphere — the physics is different
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The Cooling and Contracting
Mesosphere and Lower Thermosphere
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Cooling of the MLT from 2002 to 2020
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Cooling MLT from 2002 to 2020
Measured by SABER on TIMED
Global annual mean temperatures
MLT 2 K to 20 K colder in 2020

Due to weakening solar cycles
and increasing CO,

Substantial effect on structure
of the MLT system
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Definition of Geopotential Height

The geopotential ®(h) is the gravitational potential energy per unit mass at altitude h

The geopotential is defined as:
h

d(h) = j g(z) dz

0

The geopotential height, Z,(h), is defined as the geopotential relative to the standard
acceleration due to gravity at Earth’s surface:

d(h)
Jdo

Zg(h) —

SABER provides Z,(h) of each point in pressure in the vertical
* Examine Z,(h) to determine change in geopotential height of pressure surfaces

* Examine differences in Z,(h) between different pressure surfaces to examine “thickness” of layers
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Concept of Thickness and Contraction of Atmospheric Layers

* Pressure is the natural vertical coordinate of the atmosphere
* Compute the geopotential height (Z,) between any two pressure surfaces

P1 Z1
P1 Z1
| |
Zg (T1) Cooling Z,(T2)
J Atmosphere J
Po T S

* As the atmosphere cools, Z, will decrease — that is, the “thickness” of the atmosphere decreases

* This decrease is observed over time in the mesosphere and lower thermosphere with Zg from SABER
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Global Annual Mean Thickness Relative to 1 hPa (47 km)
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SABER Change in Geopotential Thickness from 2002 (meters)

The Entire MLT has Contracted from 2002 to 2020

SABER GPH Thickness Change Relative to 1 hPa, 2002 to 2020
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Summary

Energy is conserved and CO, plays a significant role in the MLT heat budget

CO, is increasing throughout the entire perceptible atmosphere

This is causing simultaneous surface warming and MLT cooling - as predicted!

CO, cools the MLT by allowing it to radiate the same amount of energy at a
lower temperature

* The MLT today is 2 K to 20 K colder today than in 2002
* The MLT has contracted by 1500 m between 47 km and 105 km since 2002

* These changes are due to a combination of weak solar cycle activity and carbon
dioxide increase

 The MLT is likely the coldest it has been in the past 250 years, and possibly than
in tens to hundreds of thousands of years
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A View to the Future

Cubism and You

What Pis Can Do
About Systemic Bias

SCIENCE NEWS BY AG

How's the Weather on Titan?

WHAT'S GOING ON IN

GEOSPACE?

Observational gaps could make it tougher

1o understand high-altitude dimate change
and avoid catastrophes in low-Earth orbit.

* The MLT has been under continuous observation since 2002

* No new missions or instruments in development or planned to
continue this remarkable record

* A gap in observations seems unavoidable

* Continuity of observations is essential to understand the
ongoing change in this region and its influence on the
geospace (200 to 1000 km) above

https://eos.org/opinions/an-observational-gap-at-the-edge-of-space
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Thank You!
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