

Simulated trends in ionosphere-thermosphere climate due to predicted main magnetic field changes from 2015 to 2065

Ingrid Cnossen¹ Astrid Maute²

¹NERC Independent Research Fellow (NE/R015651/1), British Antarctic Survey ²National Center for Atmospheric Research

British Antarctic Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Why do we care about high-altitude climate?

Managing space debris

- Satellites operate in the upper atmosphere (~90-500 km)
- Population of space debris is growing – collisional hazard
- Satellite orbit and space debris lifetime depend on upper atmosphere density
- Remote sensing signals can be distorted by the ionosphere
 - Stability of long-term measurements can be affected by long-term ionospheric changes
- Connections to lower atmosphere climate change

BBC	Sign in	News	Sport	Weather	Shop	Earth	Travel	More	•	Sea
NEW	/S									
Home Video	o World UK	Business Te	ech So	cience M	agazine	Enterta	inment &	Arts Healt	h Wo	rld Nev
Science &	Environment									

Trouble in orbit: the growing problem of space junk

By Dr Hugh Lewis University of Southampton

Science & Environment

Drivers of upper atmosphere climate change

- Solar and geomagnetic activity variations
- Increase in CO₂ concentration
 - Cools upper atmosphere
 - Thermal contraction
 - Indirect changes via altered lower boundary forcing?
 - Magnetic field changes
 - Important for ionosphere
 - Regionally varying

Geomagnetic field changes and effects

- Decreasing main field strength
 - Causes increase in ionospheric conductivity
- Changes in field orientation
 - Causes changes in plasma transport processes, electron density
- Change in position of magnetic pole / auroral oval
 - Causes change in geographic distribution of high-latitude current systems, Joule heating
- Change in position of magnetic equator
 - Causes changes in low-latitude current systems, electron density

From Cnossen & Maute (2020), based on prediction by Aubert (2015)

Methodology

- Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM)
- 2.5°x2.5° grid, ¼ scale height
- Two full-year simulations with magnetic field of 2015 (mf2015) and 2065 (mf2065)
- Includes effects of the magnetic field on conductivity and electrodynamics, and changes in mapping from magnetic to geographic coordinates
- Observed solar and geomagnetic forcing for 2015 used for both
 - High-latitude forcing is fixed in magnetic coordinates only mapping effects included
- Hourly data
- Analyze average differences

Joule heating power and neutral density

- Small increase in neutral density
- Largest and most significant for high geomagnetic activity
- Probably due to increase in Joule heating – expected for reduced main field strength
- Larger effect in SH due to larger decrease in main field strength

Joule heating power (GW)

	mf2015			mf2065 - mf2015				
	NH	SH	global	NH	SH	global		
all	5.4	5.2	10.7	0.0~(0.0%)	0.3~(6.2%)	0.3~(3.3%)		
$K_p \ge 4$	12.8	12.7	25.5	0.2~(1.3%)	0.9~(7.4%)	1.1 (4.4%)		
$K_p \leq 2$	3.6	3.3	6.8	0.0~(0.0%)	0.2~(5.2%)	0.2~(2.5%)		

Global mean total electron content (TEC)

- Global mean TEC changes depend on UT and season, varying from -4% to +3% or -0.5 to +0.3 TECU
- Due to spatial and local time variations

Total electron content (TEC) – spatial variations

Total electron content (TEC) – spatial variations

TEC response is partly a mapping effect

Cause of TEC response: vertical transport terms

Vertical ExB drift

Vertical movement due to horizontal winds pushing plasma up/down magnetic field lines

Vertical component of diffusion along the magnetic field

Changes in vertical ExB drift are the most important driver of the TEC response
Crosson & Maute

Electron density changes at Jicamarca

- Increase in daytime peak electron density at Jicamarca
- Appears inconsistent with reduced upward ExB drift

Electron density changes at Jicamarca

- Increase in daytime peak electron density at Jicamarca
- Appears inconsistent with reduced upward ExB drift
- But makes sense as entire EIA structure weakens!

Summary and conclusions

- Predicted main magnetic field changes from 2015 to 2065 cause minor effects on the thermosphere
 - Very small increase (1-2%) in thermosphere density too small to be reliably detectable; unimportant compared to CO₂ effect on density
 - Due to minor increase (2-4%) in Joule heating, mainly coming from SH
 - But they cause substantial effects on the ionosphere
 - Changes in TEC of up to ±10 TECU or ±35% during daytime between ~45°S-45°N, 110-0°W
 - Mainly driven by changes in vertical ExB drift
 - In the Jicamarca longitude sector reduced ExB drifts weaken the EIA, causing an increase in the daytime electron density at Jicamarca
- Effects of predicted magnetic field changes on TEC should be observationally detectable and could make a significant contribution to long-term trends in TEC, depending on spatial and temporal averaging

Cnossen, I., and A. Maute (2020), Simulated trends in ionosphere-thermosphere climate due to predicted main magnetic field changes from 2015 to 2065, *J. Geophys. Res. Space Physics, 125*, e2019JA027738, doi: 10.1029/2019JA027738.