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Outline
• GC workshop themes as related to 

multiscale modeling 

• Multi-scale system and coupling 
approaches 

• small —> large 

• large —> small 

• data-driven multi-scale modeling 

• Future:  multiscale modeling advances? 

• challenges? 

• approaches?
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Connection to Grand Challenge session:  global vs. and 
local scale modeling

• In many important situations, small-
scale processes have been shown to 
matter to global-scale dynamics 

• Large- and small- scale models tend to 
be operated independently, preventing 
an accurate assessment of cross-scale 
coupling impacts.  

• Driving models at multiple scales is a 
bit of an art at this point

• How much can we improve physical 
understanding and reproducibility of multi-scale 
coupling processes in the IT system? 

• small-scale and meso-scale intense particle 
precipitation events 

• meso- and small- scale IT structures (including 
waves/AGWs) and their relation to driving.  

• ionospheric density structuring and 
conductance at multiple scales (patches and 
instabilities:  GDI, KHI, and FBI)

Motivation Science question(s)



Large-to-small scale coupling:  BG state 
impacts on instabilities

• Ionospheric instabilities (GDI, KHI, GRTI) depend on background atmosphere-
ionosphere state and time history 

• E.g. time and space dependent flows + photoionization + cusp precipitation led to 
formation of large-scale polar cap patches 

• Patches can undergo turbulent cascade to smaller scales - details of resulting 
irregularities depend sensitively on physical processes included in the models and 
spatial resolution

• These details, in turn, affect modeled GNSS phase scintillation (below)

Deshpande et al (GC Tuesday session)

Moen et al (2013)
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Small-to-large scale coupling:  GW effects on plasma transport

• Burleigh et al (2018):  simulation of TID event observed via Sondrestrom ISR driven by a medium-scale 
GW consistent with ion parallel drift data (a data-inspired case study) 

• Strong variations in background plasma density and temperature result from breaking and 
dissipation of nonlinear GWs

• Degree of nonlinearity/breaking strongly affects ionospheric response; strongest waves do not have as 
much of an effect on ionospheric plasma density while “moderate” nonlinearity has a marked effect…
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Small-to-large scale coupling:  micro-
turbulence effects

• Farley-Buneman instability (FBI) and electron heating 

• Reduces plasma recombination rates 

• Increases conductance, altering ionospheric 
electrodynamics (which are constrained by current 
continuity) 

• The effect is large enough to change the global 
distribution of conductance and the m’spheric response 
during storms

Oppenheim and Dimant, (2013)

Wiltberger et al (2017)



Small-to-large scale coupling:  shock-acoustic wave 
modification of background atmosphere-ionosphere

• Post-seismic ionospheric perturbations to TEC observed following 
M 9.1 Tohoku earthquake off the coast of Japan (below). 

• Zettergren et al (2017) modeled strong shock-acoustic waves 
which were responsible for semi-permanent thermosphere-
ionosopheric effects lasting more than an hour after the EQ (right).
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Scale-dependent 
inputs:  Joule heating

• Codrescu et al (1995) pointed out importance of small-scale electric field variability 

• Modeled by Deng et al (2009) via inclusion of a statistical model of electric field 
variations. 

• Thermospheric temperatures vary by ~100 K; densities varied by ~40% 

• Another layer of complexity to the joule heating is the fact that undermesolving the 
background field can also have large effects on thermospheric behavior, e.g. Yigit 
et al, (2011).



*Scale-dependent inputs 
2:  auroral currents

• Lynch et al (2015) observed and performed data-driven modeling case 
studies of sounding rocket (MICA) passage through an auroral arc. 

• Different smoothing for electric field model inputs led to VERY different 
model results for field-aligned current parameters of interest. 

• Scale-dependent inputs not only matter for the global scale models, 
but they also have a huge effect on local-scale modeling studies!
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Multi-scale model coupling 
• Two-way multi scale coupling (small <—> large) is an 

ultimate goal but very challenging in many cases 

• However, it is clear that basically all coupling processes 
involve some sort of feedback between components. 

• Ionospheric outflow into the magnetosphere is an example of 
a physical processes needing a self-consistent treatment. 

• Energy input from m’sphere causes outflow, which then 
mass-loads the magnetosphere and alters reconnection. 

• Varney et al, (2016a,b) have integrated a model of non 
thermal ion outflows with the multifluid LFM global 
magnetospheric model 

• Ion energization controlled partly by parameterized wave 
heating 

• Polar cap ionospheric and global magnetospheric state 
(here the presence of sawtooth oscillations in open flux 
and CPCP) affected by relatively small-scale phenomena

IPWM

IPWM+MFLFM

Varney et al (2015)

Varney et al (2016a,b)



Resolved GW simulations
• Liu et al (2014) presented high-resolution 

(0.25 degrees x 0.1 scale heights) WACCM 
modeling of gravity waves and their effects in 
the lower and middle atmosphere. 

• Reasonable agreement with TIMED/SABER 
data analysis demonstrate effectiveness of 
high-resolution modeling methods 

• Small scale waves feed into tidal 
amplitudes and other larger-scale features 
and generally improve agreement with 
observations

• See also Yigit et al (2008,2009) who have 
developed a parameterization of effects of 
GW dissipation in GCMs

Liu et al (2014)

tropical cyclone



Multi-scale modeling challenges (opportunities)
Serious technical challenges exist for modelers:

• Immense amounts of (model) data (100s of GB to TB) need to be saved and/or passed between 
coupled models making memory and storage management onerous and adversely impacting model 
performance and complicating reproducibility 

• Computational requirements can be rather extreme for efforts pushing the envelope on resolution 

• E.g. our small-scale simulations require in excess of 250M grid points and we still struggle to cover 
more than 10 degrees of lat/lon. 

• Global model resolution better than 0.25 degrees is fairly uncommon. 

• Single simulations at high res can take days to complete on hundreds of cores - too expensive to do 
true parameter space studies. 

• Explicit (CFL-limited) methods get disproportionately more expensive at small scales since time step is 
grid resolution dependent, most good advection schemes are explicit 

• Overcoming software limitations - e.g. flexibility, scalability, missing physics, coupling - a constant 
issue

• There are MANY methods available for dealing with the problems we face; however, they take time to 
implement and may require serious code restructuring along with some trial and error. 

• Much effort is required to do a good job designing, optimizing, parallelizing, and distributing codes.  
Upkeep is necessary.   

Most of these issues are exacerbated by introduction of multi-scale/multi-physics 
elements into the models!



Approaches to multi-scale modeling
• Basic parameterizations (e.g. Joule heating) have been quite effective at 

capture some global consequences of small-scale physics;  

• Background-sensitive parameterizations in global models may help assess 
global scale consequences of small-scale dynamics.   

• Good data coverage needed; in the case of ion outflow example (Varney et 
al, 2016a,b) it is clear that we do not have what is needed… 

• Small-scale modeling is critical to informing development of 
parameterizations and assessing their effectiveness.   

• Coupling models of different scale can provide some benefits and an avenue 
for immediate advancement

• Variable resolution mesh schemes can be useful. 

• Physics needed in models may depend on resolution; numerical needs 
depend on physics… 

• Resolved simulations are a path forward but until we can model the full 
spectrum of waves/precipitation/electric fields this approach brings up 
issues:  to what degree does partially resolving processes improve fidelity of 
results? 

• Much software development is required to implement basically any approach to 
multi-scale modeling — Open Sourcing and code-sharing can increase 
number of developers refining and adding functionality to a project.

Global 
Layer

Regional 
Layer 1

Regional 
Layer 2 9°x9° with 0.08°x0.08° res.

16°x16° with 0.3°x0.3° res.

Global with 1.4°x1.4° res.

Deng et al, (GC session Wednesday)



Concluding remarks
• Discussion here is meant as an overview of past work that can be categorized as multiscale and is 

necessarily somewhat superficial in terms of physical detail —> translation - please correct me if I’ve 
cited or described your work improperly. 

• A large variety of physical systems and compelling problems exist that involve multi scale 
coupling — ranging from the global m’spheric behavior to middle atmospheric turbulence.

• Attempts to capture multi-scale processes in models, while incomplete, have yielded important 
new insights into MITM system (Magnetosphere-Ionosphere-Thermosphere-Mesosphere) behavior.

• Some approaches for future advance seem promising but computing resources and model 
development/coupling require significant resources and attention.  

• For many processes (e.g. outflow) we do not have data coverage necessary to sufficiently 
constrain our models and parameterizations.

• Please consider attending our GC workshop today through Wednesday!

• Please also consider submitting to our related AGU session — SA004. Cross-scale Coupling and 
Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System:  Toshi Nishimura, Olga 
Verkhoglyadova, Yue Deng, Cheryl Huang
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Large-to-small scale coupling:  
atmospheric wave-wave coupling

• Something from C. Heale about wave-wave coupling across scales



Small-to-large scale coupling:  GW effects in global models
• GWs present a particularly difficult problem for 

atmospheric models since they are known to cover a 
wide range of scales (10s of km to thousands of km) and 
impact background atmospheric state 

• Yigit et al (2009) parameterize effects of dissipation of 
upward propagation GWs in the CMAT2 GCM.   

• Include effects of: 

• Viscosity 

• Wave breaking 

• Newtonian cooling 

• Ionospheric drag 

• Parameterization driven by a source spectrum of GWs 
above the tropopause 

• Results demonstrate that the parameterization are 
partially successful in bringing GCM simulated winds 
into agree with empirical models



Scale-dependent inputs:  Joule heating II

• Yigit et al (2011) model Joule 
heating at different resolutions and 
demonstrate ~40% effects on the 
amount of energy delivered to 
atmosphere at high vs. low 
resolutions 

• low:  5 x 5 deg. (lat. x lon.) 

• high:  2.5 x 0.3125 deg. 

• Results partially a consequence of 
resolving input electric field peaks 
better 

• Better-resolved average field 
input results in more accurate 
representations of Joule heating



Extra plots
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Panel Slides



Multiscale approaches to boosting 
model resolution

• Non-uniform mesh capabilities useful when it is known a 
priori where more resolution is needed. 

• Relatively easy to implement; yet limited since mesh 
step size in a particular direction can only change 
with with that coordinate.  Also if have have a 
particularly stiff problem then poor resolution at 
boundaries may hurt. 

• Nested grids (static with time) 

• More complicated to implement since it will alter 
message passing schemes; more flexible since step 
size can change in both directions 

• AMR methods may be useful when we do not know a 
priori where high resolution is needed 

• Significant in terms of development investment, and 
incurs some processing overhead.  Need some sort 
of local time stepping to really take advantage but 
that is dicey.   

• None of these address issue of new physics, e.g. ion 
inertia, becoming important at small scales so we still 
need distinct models for large and small scales.


