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For background on GNSS in CEDAR science: 

Anthea Coster tutorial: 
http://cedarweb.vsp.ucar.edu/on-line_video/2011/2011_GEM-CEDAR_Student_Tutorial_Coster.mp4    (video) 
http://cedarweb.vsp.ucar.edu/wiki/images/5/53/2011_Coster_Student_tutorial_gps.pdf     (slides) 

Jonathan Makela tutorial: 
http://cedarweb.vsp.ucar.edu/wiki/images/2/24/Makela_Tutorial.pdf    (slides only)

Note: For 20 years of CEDAR tutorials (most with video!), 
http://cedarweb.vsp.ucar.edu/wiki/index.php/Workshop:CEDAR_Videos 
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GPS ObservablesGPS as Ionospheric Diagnostic
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Code propagates at 
group velocity.   1 bit of 
information is about 300m 
long.   Absolute delay 
determined by correlation 
at the receiver, but there is 
inherent meter-level range 
uncertainty.

Carrier propagates at 
phase velocity.   1 cycle is 
about 20 cm.   Sample to 
sample variation in phase 
provides precise 
information about change in 
phase speed along signal 
path, but has inherent 2π  
ambiguity. 28 June 2009CEDAR Student Workshop, Santa Fe, NM

Ionospheric Delay

• The ionospheric delay can be quantified by
considering two equivalent paths, one with
an ionosphere and one in vacuum.
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Subtle effects of a solar eclipse
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Mrak et al GRL 2018



GPS scintillation by substorm auroras
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Figure 4. a) Co-aligned 558-nm greenline brightness and PFISR electron density in the zenith direction.

b) Detrended L1 Carrier phase for MAH2-PRN23 GPS link over the same density field, showing correlation

between strong phase scintillation and LL events, indicated by red X’s. c) Scatter plot showing detrended

carrier phase for all measurements used in this study. Red X’s again indicate LL .
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The NSF Mahali Experiment
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Strong E-region phase scintillation observed only along  
the trailing edge of the westward traveling surge

Semeter et al., 2017; Mrak et al., 2018 25
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8944 ROTHWELL ET AL.: PROPAGATION OF THE WESTWARD TRAVELING SURGE 
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Fig. 2. Idealized model of the WTS as proposed by lnhester et al. [1981]. The total external electric field E o drives a 
westward Pedersen and a northward Hall current. If the northward Hall current is not fully continued by field-aligned 
currents into the magnetosphere polarization charges build up on the northern surge boundary producing a southward 
directed electric field Ep. This southward electric field produces a Hall current in the same direction as the Pedersen 
current from the original electric field E o. This affects the direction of the surge motion as described in the text. Negative 
polarization charge may also build up at the surge head due to intense electron precipitation [lnhester et al., 1981]. This is 
treated in our idealized model by allowing a renormalization of E o. In our coordinate system, z points perpendicular to E o 
and x is parallel to E o, which approximately corresponds to north and west. 

which is a wave equation with a phase velocity given by 

V, = QH•V• (6) 

and where V• = Eo/B. Note that (5) is also invariant under the 
Galilean transformation •H = •H(z'),where z'= z- 

Figure 3 shows the estimated variation of QH with incident 
electron energy as taken from Figure 2 of Rees [1963]. From 
this figure it is seen that a 1-keV monoenergetic precipitating 
flux implies QH -• 10 and for a 10 keV flux QH -• 90. Thus, 
when the energy spectrum of the precipitating electrons hard- 
ens the boundary velocity can increase by factors of 10. Meng 
et al. [1978] have measured a very hard precipitating energy 
spectrum in the surge region. We argue that the surge velocity 
is related to the production of energetic electrons connected 
with substorm onsets. According to this mechanism the surge 
velocity should increase dramatically during substorm onsets 
as has been observed by Samson and Rostoker [1983]. 

We now consider the western boundary (i.e., the surge 
head). The dynamics of this boundary is connected to the 
propagation of the poleward boundary through closure. That 
is, a small • implies a large Ep which drives a westward Hall 
current that adds to the Pedersen current driven by E o. The 
total westward current is given by 

Jw = ZpEo q- ZHEp (7) 

TABLE 1. Height Integrated Ion Production (QH) From 
Precipitating Electrons 

Vt,, km/s 
Q, QH, (• = 1, R = 3.0, 

Eincid, key H, km ions/e- cm ions/e- E = 15 mY/m) 

1.0 20 5 x 10 -6 10 3.7 
1.65 10 8 x 10 -6 8 3.0 
5.60 7 7 x 10 -5 49 18.7 

40.00 5 8 x 10 -½ 400 150.0 

The height-integrated ion production (QH) from precipitating elec- 
trons is listed as a function of incident electron energy. These values 
were estimated from Figure 2 in the article by Rees [1963]. The 
appropriate height interval H is estimated at the maximum value of 
Q. The incident electrons are considered to be isotropic, mon- 
oenergetic beams. The results are plotted in Figure 3. The parameter 
• is a measure of how efficiently the poleward Hall current closes into 
the magnetosphere, R is the ratio of the Hall and Pedersen conduc- 
tivities, and E is the measured (see equation (15)) electric field in the 
surge region and Vt, is the total surge velocity as defined in (14). 

From the above definition of Jn we have 

Jp=(1 --•Z)J H 
(8) 

EpEp = (1 -- •Z)EHE o 
Substituting this expression for Ep into (7) leads to an a- 
dependent Cowling current 

Jw: { 1 q- R2(1 -- o0}EoZ p (9) 
where 

R = •/•p 
The precipitating current at the head of the surge is 

ill = {1 + R2(1- •z)}Eoc?Ep/C?x (10) 
Jll: [{1 + R2(1 - •z)}Eo/R]•ZH/•X 

where the x axis is in the westward direction and R is con- 
sidered independent of x. Note that at the northern boundary 
it was not necessary to assume R constant in deriving (5). 
Therefore, Ep (equation (8)) may also be a function of z, and 
our model implicitly allows polarization charge along the 
northern boundary. A wave equation is now derived for the 
western boundary associated with the surge head just as for 
the northern boundary. The resulting phase velocity is 

Vw = QH•{1 + R2(1 - •)}/R (11) 
We now assume that the surge head region will propagate 

in a direction determined by the vector sum of V, and Vw. The 
direction of the resultant surge velocity based on this idealized 
model is given by 

tan •/s = l/,/Vw = •R/{1 + R2(1 -•)} (12) 
where •/$ = 0 corresponds to due west motion. We see that the 
direction of the surge is highly dependent on the degree of 
closure on the northern surge boundary and the value of R on 
the western surge boundary. For zero closure (• = 0) the surge 
moves due west. For complete closure (• = 1) the direction is 
almost due north [tan •'s - R • 3; •'s -• 72ø] ß 

The sensitivity of •'s to • is modulated by the magnitude of 
R. A detailed plot of •'s versus • for various values of R is 
shown in Figure 4. Note that the surge direction can range 
from due west to northeast, where the latter condition will 
arise when there is significant overclosure (• > 1) during 
periods of intense electron precipitation. 

Inhester et al., 1981; Rothwell et al., 1984

Strong E-region phase scintillation observed only along  
the trailing edge of the westward traveling surge
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currents into the magnetosphere polarization charges build up on the northern surge boundary producing a southward 
directed electric field Ep. This southward electric field produces a Hall current in the same direction as the Pedersen 
current from the original electric field E o. This affects the direction of the surge motion as described in the text. Negative 
polarization charge may also build up at the surge head due to intense electron precipitation [lnhester et al., 1981]. This is 
treated in our idealized model by allowing a renormalization of E o. In our coordinate system, z points perpendicular to E o 
and x is parallel to E o, which approximately corresponds to north and west. 

which is a wave equation with a phase velocity given by 

V, = QH•V• (6) 

and where V• = Eo/B. Note that (5) is also invariant under the 
Galilean transformation •H = •H(z'),where z'= z- 

Figure 3 shows the estimated variation of QH with incident 
electron energy as taken from Figure 2 of Rees [1963]. From 
this figure it is seen that a 1-keV monoenergetic precipitating 
flux implies QH -• 10 and for a 10 keV flux QH -• 90. Thus, 
when the energy spectrum of the precipitating electrons hard- 
ens the boundary velocity can increase by factors of 10. Meng 
et al. [1978] have measured a very hard precipitating energy 
spectrum in the surge region. We argue that the surge velocity 
is related to the production of energetic electrons connected 
with substorm onsets. According to this mechanism the surge 
velocity should increase dramatically during substorm onsets 
as has been observed by Samson and Rostoker [1983]. 

We now consider the western boundary (i.e., the surge 
head). The dynamics of this boundary is connected to the 
propagation of the poleward boundary through closure. That 
is, a small • implies a large Ep which drives a westward Hall 
current that adds to the Pedersen current driven by E o. The 
total westward current is given by 

Jw = ZpEo q- ZHEp (7) 

TABLE 1. Height Integrated Ion Production (QH) From 
Precipitating Electrons 

Vt,, km/s 
Q, QH, (• = 1, R = 3.0, 

Eincid, key H, km ions/e- cm ions/e- E = 15 mY/m) 

1.0 20 5 x 10 -6 10 3.7 
1.65 10 8 x 10 -6 8 3.0 
5.60 7 7 x 10 -5 49 18.7 

40.00 5 8 x 10 -½ 400 150.0 

The height-integrated ion production (QH) from precipitating elec- 
trons is listed as a function of incident electron energy. These values 
were estimated from Figure 2 in the article by Rees [1963]. The 
appropriate height interval H is estimated at the maximum value of 
Q. The incident electrons are considered to be isotropic, mon- 
oenergetic beams. The results are plotted in Figure 3. The parameter 
• is a measure of how efficiently the poleward Hall current closes into 
the magnetosphere, R is the ratio of the Hall and Pedersen conduc- 
tivities, and E is the measured (see equation (15)) electric field in the 
surge region and Vt, is the total surge velocity as defined in (14). 

From the above definition of Jn we have 

Jp=(1 --•Z)J H 
(8) 

EpEp = (1 -- •Z)EHE o 
Substituting this expression for Ep into (7) leads to an a- 
dependent Cowling current 

Jw: { 1 q- R2(1 -- o0}EoZ p (9) 
where 

R = •/•p 
The precipitating current at the head of the surge is 

ill = {1 + R2(1- •z)}Eoc?Ep/C?x (10) 
Jll: [{1 + R2(1 - •z)}Eo/R]•ZH/•X 

where the x axis is in the westward direction and R is con- 
sidered independent of x. Note that at the northern boundary 
it was not necessary to assume R constant in deriving (5). 
Therefore, Ep (equation (8)) may also be a function of z, and 
our model implicitly allows polarization charge along the 
northern boundary. A wave equation is now derived for the 
western boundary associated with the surge head just as for 
the northern boundary. The resulting phase velocity is 

Vw = QH•{1 + R2(1 - •)}/R (11) 
We now assume that the surge head region will propagate 

in a direction determined by the vector sum of V, and Vw. The 
direction of the resultant surge velocity based on this idealized 
model is given by 

tan •/s = l/,/Vw = •R/{1 + R2(1 -•)} (12) 
where •/$ = 0 corresponds to due west motion. We see that the 
direction of the surge is highly dependent on the degree of 
closure on the northern surge boundary and the value of R on 
the western surge boundary. For zero closure (• = 0) the surge 
moves due west. For complete closure (• = 1) the direction is 
almost due north [tan •'s - R • 3; •'s -• 72ø] ß 

The sensitivity of •'s to • is modulated by the magnitude of 
R. A detailed plot of •'s versus • for various values of R is 
shown in Figure 4. Note that the surge direction can range 
from due west to northeast, where the latter condition will 
arise when there is significant overclosure (• > 1) during 
periods of intense electron precipitation. 



Evidence for bursty flows exceeding 3 km/s (150 mV/m) 
with components normal and tangential to auroral density gradient. 
 
BUT, fields and flows within the surge are unresolved by current capabilities. 
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flux implies QH -• 10 and for a 10 keV flux QH -• 90. Thus, 
when the energy spectrum of the precipitating electrons hard- 
ens the boundary velocity can increase by factors of 10. Meng 
et al. [1978] have measured a very hard precipitating energy 
spectrum in the surge region. We argue that the surge velocity 
is related to the production of energetic electrons connected 
with substorm onsets. According to this mechanism the surge 
velocity should increase dramatically during substorm onsets 
as has been observed by Samson and Rostoker [1983]. 

We now consider the western boundary (i.e., the surge 
head). The dynamics of this boundary is connected to the 
propagation of the poleward boundary through closure. That 
is, a small • implies a large Ep which drives a westward Hall 
current that adds to the Pedersen current driven by E o. The 
total westward current is given by 

Jw = ZpEo q- ZHEp (7) 

TABLE 1. Height Integrated Ion Production (QH) From 
Precipitating Electrons 

Vt,, km/s 
Q, QH, (• = 1, R = 3.0, 

Eincid, key H, km ions/e- cm ions/e- E = 15 mY/m) 

1.0 20 5 x 10 -6 10 3.7 
1.65 10 8 x 10 -6 8 3.0 
5.60 7 7 x 10 -5 49 18.7 
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The height-integrated ion production (QH) from precipitating elec- 
trons is listed as a function of incident electron energy. These values 
were estimated from Figure 2 in the article by Rees [1963]. The 
appropriate height interval H is estimated at the maximum value of 
Q. The incident electrons are considered to be isotropic, mon- 
oenergetic beams. The results are plotted in Figure 3. The parameter 
• is a measure of how efficiently the poleward Hall current closes into 
the magnetosphere, R is the ratio of the Hall and Pedersen conduc- 
tivities, and E is the measured (see equation (15)) electric field in the 
surge region and Vt, is the total surge velocity as defined in (14). 

From the above definition of Jn we have 

Jp=(1 --•Z)J H 
(8) 

EpEp = (1 -- •Z)EHE o 
Substituting this expression for Ep into (7) leads to an a- 
dependent Cowling current 

Jw: { 1 q- R2(1 -- o0}EoZ p (9) 
where 

R = •/•p 
The precipitating current at the head of the surge is 

ill = {1 + R2(1- •z)}Eoc?Ep/C?x (10) 
Jll: [{1 + R2(1 - •z)}Eo/R]•ZH/•X 

where the x axis is in the westward direction and R is con- 
sidered independent of x. Note that at the northern boundary 
it was not necessary to assume R constant in deriving (5). 
Therefore, Ep (equation (8)) may also be a function of z, and 
our model implicitly allows polarization charge along the 
northern boundary. A wave equation is now derived for the 
western boundary associated with the surge head just as for 
the northern boundary. The resulting phase velocity is 

Vw = QH•{1 + R2(1 - •)}/R (11) 
We now assume that the surge head region will propagate 

in a direction determined by the vector sum of V, and Vw. The 
direction of the resultant surge velocity based on this idealized 
model is given by 

tan •/s = l/,/Vw = •R/{1 + R2(1 -•)} (12) 
where •/$ = 0 corresponds to due west motion. We see that the 
direction of the surge is highly dependent on the degree of 
closure on the northern surge boundary and the value of R on 
the western surge boundary. For zero closure (• = 0) the surge 
moves due west. For complete closure (• = 1) the direction is 
almost due north [tan •'s - R • 3; •'s -• 72ø] ß 

The sensitivity of •'s to • is modulated by the magnitude of 
R. A detailed plot of •'s versus • for various values of R is 
shown in Figure 4. Note that the surge direction can range 
from due west to northeast, where the latter condition will 
arise when there is significant overclosure (• > 1) during 
periods of intense electron precipitation. 

Inhester et al., 1981; Rothwell et al., 1984
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Summary and Future
• “Field of view” is small for GNSS (order kilometer).  Spatial sampling 

limited by density of receivers (hence, money, processing power). 

• GNSS techniques are highly synergistic with incoherent scatter radar  
(see, Semeter et al., Rad. Sci., 2015) 
- GNSS measured integrated density from satellite to ground. 
- ISR measures integrated density over some volume. 
- Can be treated as synergistic projections of the same parameter. 

• We are currently exploring data fusion using measurements from 
inexpensive single-frequency sensors — e.g.,  in your mobile phone!
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