

Perspectives on Ionospheric Electrodynamics

Arthur D. Richmond, NCAR-HAO and collaborators

- Ionospheric dynamo modeling
- Disturbance dynamo
- Assimilative Mapping of Ionospheric Electrodynamics (AMIE)
- Interactions of ionospheric fields with magnetospheric plasma
- Joule heating impacts on the thermosphere
- Low-latitude evening electrodynamics

Lunar tidal response to stratospheric sudden warmings

Yosuke Yamazaki

Stratospheric zonal-mean zonal wind at 60° N

Stratospheric temperature at North Pole

Amplitude of 14.76-day geomagnetic perturbation at Addis Ababa

Robert Stening

Maura Hagan

Jeff Forbes

Nick Pedatella

Hanli Liu

Wind, geomagnetic coordinates, 30-90 lat.

Yosuke Kamide

Delores Knipp

Barbara Emery

ASSIMILATIVE MAPPING OF IONOSPHERIC ELECTRODYNAMICS (AMIE)

00

Gang Lu

Geoff Crowley

Aaron Ridley

Abena Poku-Awuah

SuperDARN Assimilative Mapping (SAM) procedure

Cousins et al. (2013a,b)

Ellen Cousins

Tomoko Matsuo

Marina Galand

Low-Latitude Ionization by Energetic Neutral Atoms Lyons and Richmond (1978)

Larry Lyons

"Magnetic Mirroring" of Neutral Atoms

Galand and Richmond (1999)

Fuller-Rowell

Stan Sazykin

Arsene Kobea

Non-Dipolar Geomagnetic Field Effects on Ionospheric Electrodynamics Calculated Using Magnetic Apex Coordinates

Sarah Gasda

Emmert et al. (2010) Laundal and Richmond (2017)

Karl Laundal

John Emmert

Density Response at 400 km to Joule Heating at Different Heights

Huang et al. (2012)

Yanshi Huang

Yue Deng

Much more Joule heat is deposited in the E region than in the F region, but F-region heating dominates the density response during at least the first 12 hours of a storm, especially at solar maximum.

Rapid Altitude Growth of Diurnal Tide in Temperature at McMurdo Fong et al. (2015)

Weichun Fong

Xinzhao Chu

Low-Latitude Evening Electrodynamics

Tzu-Wei Fang

Astrid Maute

Will Evonosky

Richmond et al. (2015) Richmond and Fang (2015) Evonosky et al. (2016)

- ExB convection is practically constant along magnetic field lines.
- Differences between neutral wind velocity and ExB velocity create drag on convection.
- Eastward neutral wind at EIA latitudes increases with height and toward the east, tending to drag plasma along.
- Continuity of ExB convection requires vertical inflow around 18.5-19 LT, producing prereversal enhancement (PRE) of vertical drift around 400 km.
- Upward ExB convection extends through E region, where the equatorial electrojet exerts drag on the convection.

Concluding Remarks

Ionospheric electrodynamics involves interactions:

- ionization processes
- ionosphere dynamics
- neutral dynamics
- tides and waves (coupling with lower atmosphere)
- coupling with magnetosphere

It therefore requires collaborative research.

Advancements call for:

- extensive observations
- whole-atmosphere modeling
- coupled magnetosphere/ionosphere/atmosphere modeling
- data assimilation