Secondary Gravity Waves and Coupling from the Lower Atmosphere to the MLT

Katrina E. Bossert

NSF Postdoctoral Report

Collaborators: Christopher J. Heale, Christopher G. Kruse, David C. Fritts, Bifford P. Williams, Jonathan B. Snively, Pierre-Dominique Pautet, Michael J. Taylor

Secondary Gravity Waves Overview

Linear Generation

Secondary GWs form due to the body force from breaking primary GWs [Vadas et al., 2003] Nonlinear Generation

-Mechanism less understood

-modeling studies demonstrate smallerscales than breaking GW Importance in the Atmosphere

-GW spectra change throughout the atmosphere

-Secondary GWs largely unaccounted for in global scale parameterizations /difficult to resolve smaller scales

DEEPWAVE: Mountain Wave Generation Over NZ

AIRS rms Temperature Jun-Jul 2003-11 near ~35km

over South Island of New Zealand

Mountain Wave (MW) Critical Levels

Mountain Wave Generation

Mountain Wave Saturation

- Vertically Propagating
- Stationary

Horizontal wind perturbation is limited by the background wind.

 $|u'_H| \leq |\overline{U}_H|$

[Fritts, 1984]

MW breaking in the Stratosphere

WRF model outputs validated in Kruse et al. [2016]

Figures from Bossert et al. [2017]

Distance from Mt. Aspiring (km)

Wavelet analysis

MW Breaking in the Stratosphere: Overview

growth with altitude $\sim e^{(z-z_0)/(2H)}$

WRF shows decay from 15-25km

MW breaking in the MLT

OH Airglow ~87km

13 July 2014 \sim 240 km MW observed from 20– 87 km

Secondary GW Observations in the MLT

Advanced Mesospheric Temperature Mapper (AMTM)

Small horizontal scale GWs in warm phase each pass

GW horizontal scales: 20-30km Phase speeds: 0 to -135 m/s

Sodium Density Perturbations

50 100 150 Distance from Mt. Cook (km)

Multiple small ×10⁸ horizontal scale perturbations observed in sodium densities

0.8

0.6

0.4

0.2

0

-0.2

- Phases aligned -0.4
- both upstream -0.6
- and downstream -0.8
 - of the primary breaking MW

Secondary GW Observations and Modeling

High-resolution sodium densities during first pass demonstrate small-scale features Sodium densities in Bossert et al., 2017 demonstrate predicted secondary features arising from modeled 240 km MW breakdown in Heale et al., 2017

Other events of MWs, MW breaking, and GWs from the troposphere to the MLT

Relative Distance (km)

To be continued...

New analysis of MW propagation and breaking during the DEEPWAVE campaign, including temperature measuerments from the sodium lidar!

Today 13:30-15:30 in the *Collaborative* Investigations of MLT session.

Secondary Gravity Wave Summary

How do gravity wave hotspots in the lower and middle atmosphere have the potential to influence the upper atmosphere?

- Secondary GWs may contribute to larger vertical transport of horizontal momentum to higher altitudes above GW hotspot regions
- Secondary GWs observed at smaller or similar scales than the primary MW -> nonlinear generation mechanism
- Further studies needed on scales and spectra associated with nonlinear generation mechanisms

Acknowledgements and Collaborators

This work was supported under NSF AGS-PRF-1524598 NSF AGS-1338646 NSF AGS-1338666

Thanks to DEEPWAVE Collaborators and the dedicated NCAR team

GATS, inc. Collaborators: Dr. Dave Fritts Dr. Bifford Williams Dr. Brian Laughman Tyler Mixa

Yale Collaborators: Chris Kruse USU Collaborators: Dr. Mike Taylor Dr. Dominique Pauetet

Chris Heale is giving a talk later today on SGWs from the DEEPWAVE 13 July event in Collaborative Investigations of MLT (13:30-15:30)

> ERAU Collaborators: Dr. Chris Heale — Dr. Jonathan Snively

Questions

