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Caveats	
•  I	tend	towards	the	model	of	“constant	improvement”	
•  This	means	that	I	tend	to	not	stress	the	posi=ve	in	things	
•  This	may	come	off	as	being	pre@y	nega=ve	

–  I	am	not	really	nega=ve	
–  I	just	play	nega=ve	on	TV	

•  What	does	this	means	for	this	talk?	
–  Models	are	really,	really,	really	helpful	
–  Keep	this	in	mind	
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Types	of	Models	
•  Empirical	Models	

–  Data-based	
–  Simplis=cally:	

•  Gather	a	bunch	of	data	
•  Process	the	data	in	some	way	
•  Bin	it	in	some	way	and	calculate	averages	or	trends	or	whatever	
•  Fit	it	to	some	func=onal	form	(spherical	harmonics	or	whatever)	

–  Mean	is	typically	correct	
–  If	the	event	is	outside	of	the	scope	of	inputs,	the	results	may	
not	be	great	
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Types	of	Models	
•  Physics-Based	

–  Write	out	a	series	of	equa=ons	
–  Figure	out	a	way	to	solve	those	equa=ons	in	a	computer	

•  Numerical	differen=a=on	and	integra=on	
•  O^en	on	a	grid	of	some	sort	
•  Can	be	quite	complex	and	=me-consuming	

–  Missing	physics	is	a	big	problem!	
–  Can	do	thought	experiments:	

•  What	if	CO2	doubled	next	year?	
•  What	if	the	magne=c	field	flipped?	

–  O^en	hard	to	get	mean	correct,	but	may	work	outside	of	
observed	drivers	(may!)	
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How	to	make	a	physics-based	model?	
•  Switch	to	other	slides!	

•  You	can	find	these	presenta=ons	here:	
–  h@p://herot.engin.umich.edu/~ridley/data/CEDAR	
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Welcome	back!	
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Physics-Based	Modeling	the	Upper	Atmosphere	

•  Neutrals	can	be	described	by	Navier	Stokes	
(fluid	dynamics)	equa=ons	with	extra	
forcing	terms:	
–  Chemistry,	ion	drag,	collisional	hea=ng	with	ions	

•  Ions/electrons	are	more	difficult	to	model	
–  Chemistry	(ioniza=on,	charge	exchange,	and	
recombina=on),	electric	fields,	magne=c	fields,	
collisional	hea=ng,	cooling,	and	momentum	
transfer	with	everything	(really	hard!)	
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Thermospheric	Reac=on	to	a	Substorm	
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Complica=ons	
•  Missing	physics:	

–  Navier	Stokes	Equa=ons	are	founda=on	(thermosphere)	
–  Add	a	shiton	of	source	terms	
– What	if:	

•  The	Navier	Stokes	equa=on	set	is	not	complete	enough	to	fully	
describe	the	thermosphere?	(heat	flux?	Collisional	heat	transfer?)	

•  We	miss	some	source	terms?	(chemistry?	small-scale	mixing?)	
•  The	approxima=ons	are	not	correct?	Typically	can’t	fully	describe	
the	physics	completely,	since	it	would	take	WAY	too	long	

–  Chapman	integrals	for	hea=ng!	Fundamental!	Approximate!	
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Chapman	Example	
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Ver=cal/cos(angle)	

Actual	integral	that	
passes	through	
many	grid	cells.	

Effect?	Uh…?	



Chapman	Example	2	
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Ver=cal	*	factor	

Actual	integral	that	
passes	through	
many	grid	cells.	

Maybe	a	big	effect?	



Parameteriza=ons	
•  Simplify	physics	using	parameteriza=ons	

–  Thermal	conduc=on	
–  Viscosity	
–  Eddy	diffusion	
–  Collisions	(neutral-neutral,	ion-neutral,	ion-electron)	
–  Radia=ve	cooling	
–  Solar	inputs	(F10.7	->	EUV	spectrum)	
–  Aurora	and	electric	fields	
–  Tides	

•  How	to	tell	if	parameteriza=ons	are	correct?	
–  This	is	REALLY	hard!	
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Complica=ons	
•  Numerics:	

–  Crea=ng	a	grid	in	space	and	=me	creates	numerical	issues	
•  Can	not	capture	some	features	if	resolu=on	is	too	small	(electric	
fields,	aurora,	storm-enhanced	densi=es,	etc.)	

•  Low	resolu=on	smooths	features	out	
–  Gradients	are	reduced	
–  Forcing	terms	that	are	dependent	on	gradients	are	reduced	

•  Pole	problem	
–  Longitudinal	gradients	go	to	infinity	at	pole	
–  Complicated	to	solve	this	

•  How	to	handle	boundary	condi=ons?	
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Resolu=on	
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Thermospheric States at 250 km and 23 Local Time
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•  This	is	a	cut	through	the	auroral	oval	
•  Increasing	la=tudinal	resolu=on	from	2.5°	to	

0.5°	
•  Does	this	cause	the	hea=ng	to	increase?	
•  Captures	E-field	and	aurora	be@er	(not	

shown)	
•  Captures:	

•  Meridianal	wind	divergence	changes	
drama=cally	(cooling!)	

•  Captures	NO	density	be@er	(cooling!)	
•  Net	effect	is	li@le	change	in	density	(a	bit	higher	

in	the	polar	cap)	
•  Capture	physics	be@er,	though!	



Cubed	Sphere?	
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Boundary	Condi=ons	
•  Seems	simple,	but	really	complicated	

–  Lower	boundary:	
•  Ionosphere	is	simple,	since	there	is	no	ionosphere	below	some	al=tude	
•  Thermosphere	is	more	difficult:	

–  Densi=es,	temperatures,	winds	
–  Tides?	Gravity	waves?	

–  Upper	boundary:	
•  Ionosphere	is	complicated,	since	magne=c	field	lines	extend	out	into	the	

magnetosphere	
–  Some	are	open	and	some	are	closed	
–  If	model	is	al=tude	limited,	how	to	“cap”	the	field	line?	Upflow?	

Downflow?	
•  Thermosphere	is	maybe	a	bit	easier?	

–  Assume	some	sort	of	gradient	(hydrosta=c?)	
–  Don’t	want	to	reflect	waves	
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Ionospheric	Upper	Boundary	Condi=on	
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(Chen	Wu!)	



Data-Model	Comparisons	
•  Validate	the	Model	

–  Reasons	to	do	this:	
•  Determine	whether	the	parameters	and/or	physics	is	correct	

–  Tuning?	
•  Determine	whether	we	should	trust	the	model	

–  This	is	really	hard	to	answer	
–  It	is	pre@y	much	an	opinion	and	not	a	scien=fic	quan=fica=on	

•  Examples?	

•  Put	data	into	context	
–  Small-scale	measurements	put	into	a	larger-scale	model	context	
–  Can	be	quite	useful,	even	if	model	results	are	not	perfect	(?)	
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Problems	
•  What	to	compare	to?	

–  Local	data	or	global	data?	
–  Ionosphere	or	thermosphere	
–  Tune	the	model	to	one	data	set	and	you	may	detune	it	for	a	different	data	set	

•  Tuned	GITM	to	match	CHAMP,	and	totally	screwed	up	electron	density!	Ugh!	
•  Tuned	GITM	to	match	CHAMP	with	larger	F10.7	values,	and	it	doesn’t	work	for	lower	F10.7!	Ugh!	

Why???	
•  Data	is	hard!	

–  Lots	of	different	formats	
–  Lots	of	different	coordinate	systems	and	complica=ons	
–  Lots	of	ways	of	handling	uncertain=es	
–  Data	o^en	doesn’t	overlap	in	=me	or	space	

•  One	event	is	one	event	
–  If	it	doesn’t	match,	why?	
–  If	it	does	match,	what	does	this	mean?		The	model	is	perfect?	

•  But	we	know	that	there	are	issues	with	numerics	and	other	things,	so	should	it	be	perfect?	
•  Is	it	right	for	the	wrong	reasons?	

•  God	–	what	does	it	all	mean???	
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Tuning	to	Different	Times	
F10.7	Strong	 F10.7	Medium	
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F10.7	Low	

CHAMP	neutral	mass	density	data	–	orbit	averages	(basically	global	averages	at	400	km)	



GITM	(Weimer	+	NOAA	Run)	
Compared	to	GOCE	–	March	2013	
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Holy	Sh*t!	How	did	that	happen?	



GITM	Comparisons	to	SDI	–	March	17	
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GITM	Comparison	to	TEC	

Average	TEC	over	polar	regions	(+/-	45	deg)	

Dayside	mid-la=tude	“throat”	region	

Good?		Bad?	What	does	it	mean???	



Fabry	Perot	
Interferometer	
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FPI Data From ANN; GITM Run 
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Neural	winds	and	temperatures	above	
one	point	on	Earth	(Ann	Arbor)	
	
Is	this	good?	Bad?	
	
What	does	it	mean?	
	
Do	you	trust	the	model	now?	
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Models  Full Names Participated Modelers 

SAMI3 SAMI3 is Also a Model of the Ionosphere  
Joe Huba 

Jonathan Krall  
(NRL) 

TIEGCM Thermosphere Ionosphere Electrodynamics 
General Circulation Model 

Astrid Maute 
Art Richmond  

(NCAR) 

GITM Global Ionosphere-Thermosphere Model  
Aaron Ridley 

Angeline Burrell 
(University of Michigan)  

CTIPe Coupled Thermosphere Ionosphere 
Plasmasphere Electrodynamics Model 

Mariangel Fedrizzi 
Tim Fuller-Rowell 
Mihail Codrescu 

(CU/CIRES & NOAA SWPC) 

PRIMO	–	Tzu-Wei	Fang,	Dave	Anderson	et	al.	
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TEC	Comparisons	(70°W)	 November	2012	

Height	for	the	integra=on?	 LISN	data	were	provided	by	Cesar	Valladares	(BC)	



27	LISN	data	were	provided	by	Cesar	Valladares	(BC)	

TEC	Comparisons	(70°W)	
	

March	2013	



Summary	
•  Physics-based	models	are	extremely	complicated	

–  Physics	assump=ons,	parameteriza=ons,	grids,	numerics,	drivers,	
boundary	condi=ons,	etc.	

•  Data-Model	comparison	a@empt	to	give	some	confidence	
that	the	model	is	doing	things	right	
–  Do	they?	

•  Need	to	compare	to	all	sorts	of	different	data	sets	over	all	
sorts	of	different	=mes	

•  Really	need	something	like	ensemble	models	to	counteract	
weaknesses	(and	strengths)	of	individual	models	
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