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Outline

•  Motivation: material transport 
•  Objective: to find coherent structures in the 

thermosphere 
•  Background: Lagrangian coherent structures (LCSs) 
•  Methods: 

–  Test I: Do LCSs exist? 
–  Test II: Do they respond to geomagnetic activity? 
–  Test III: Can they bound material transport in the 

thermosphere? 

•  Results 
•  Conclusion 

June 19, 2017 2 NSF CEDAR Workshop   
Keystone, Colorado



Shuttle launch dumped water 
vapor in the thermosphere…
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Adapted from NASA image 

Thermosphere: 
Neutrals 
85 to 600 km 
 
 
Ionosphere: 
Plasma 
85 to 600 km 
 
Mesosphere: 
50 to 85 km 
 
 
 
 
 
Stratosphere: 
16 to 50 km 
 
Troposphere: 
0 to 16 km 



…that was detected across the 
Atlantic and toward the Arctic*!
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…that was detected across the 
Atlantic and toward the Arctic*!
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Transport
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* Stevens et al., [2012] 

Transport is governed by coherent structures : temporally and spatially persistent 
features that are not part of the mean flow. 

Credit: Haller [2015], NASA. 



Motivation
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•  Thermospheric coherent structures matter 
for: 
–  Environmental impact 

»  Tracking emissions, contaminants, meteor ablation 
products. 

–  Scientific understanding 
»  Generate stresses and vorticity. 
»  Play a role in energy cascade. 

Questions: Are there coherent structures in the thermosphere?  
Do they depend on geomagnetic activity? 

Do they bound transport? 



Eulerian vs Lagrangian frames

•  Eulerian:  
–  fixed grid for an observer, flow moves past  
–  streamlines 
–  useful for lab analysis of flows, but depends on the 

observer 

•  Lagrangian:  
–  frame follows the fluid particle  
–  Pathlines 
–  Observer-independent, so useful for rotating frames 

•  Lagrangian coherent structures: defined by following 
particles 
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What is a Lagrangian coherent 
structure (LCS)?
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LCS 



To find LCSs, compute the 
FTLE at each point
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To find LCSs, compute the 
FTLE at each point

June 19, 2017 15 NSF CEDAR Workshop   
Keystone, Colorado



To find LCSs, compute the 
FTLE at each point

The Finite Time Lyapunov Exponent (FTLE) σ at each 
point is the maximum eigenvalue given by 
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What is a Lagrangian coherent 
structure (LCS)?
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LCS 
FT

LE
 

The color map is the 
FTLE value and the 
ridge of maxima 
denotes the LCS. 



LCS for a time-varying 
nonlinear flow
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LCS for a time-varying 
nonlinear flow
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LCS for a time-varying 
nonlinear flow
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LCS for a time-varying 
nonlinear flow
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LCS for a time-varying 
nonlinear flow
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LCS 

LCS for a time-varying 
nonlinear flow
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LCS: a manifold (i.e., a 
ridge or surface) of 
maximal separation or 
convergence. 

LCS 



Method

•  Horizontal Wind 
Model 2014 for flow 
fields 
–  150 km, 250 km, 

350 km. 
•  Geomagnetically 

quiet time vs. active 
time. 

•  Advect particles, 
compute FTLE, plot 
LCSs. 
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LCS at 150 km altitude
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Wang et al., 2017 
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LCS at 150 km altitude

June 19, 2017 26 NSF CEDAR Workshop   
Keystone, Colorado

Wang et al., 2017 



LCS at 250 km altitude
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Wang et al., 2017 



LCS at 250 km altitude
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Wang et al., 2017 



LCS at 350 km altitude
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LCS at 250 km during a storm

FT
LE
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Wang et al., 2017 



The LCS barrier for the shuttle 
water vapor plume
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x  LCS ridge at t0 
x  LCS ridge at ti 
w vapor detected 
� model tracers 
¢ model tracers 

Wang et al., 2017 



Conclusion

•  LCSs are found in global two-dimensional model 
horizontal flows of the thermosphere. 

•  LCSs are more prominent at higher altitudes and 
latitudes and respond to geomagnetic activity. 

•  A thermospheric LCS is found to be the poleward 
barrier of space shuttle water vapor plume transport 
[Wang et al., 2017] 

•  Next: ionospheric LCSs (CEDAR poster Wednesday 
by Wang et al., MDIT-09) 
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