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Introduction of Global Electric Circuit (GEC) FESD;

@ GEC — Layer between high o Earth and lonosphere A
@ Main generators — Thunderstorms and ESC produce upward current
@ Downward fair weather current toward Earth closes GEC

@ Potential between Earth and lonosphere — lonospheric potential
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Previous GEC Modelling E;ﬁi@

@ Challenges: multiscale behaviour 7
o space (local lightning discharges vs. whole Earth)

o time (fast lightning discharges vs. long thunderstorm charging)

e Time dependent (implicit) modelling in spherical coordinates:

Browning, Tzur and Roble, 1987: JAS, 44, 15, 2166-2177.

Stansbury et al., 1993: JGR, 98, D9, 16591-16603.
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utline of Model Components FESDD
ECCWES
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(a) Schematically (drawn not to scale) full view of Earth, top ionospheric boundary,
and zero potential remote boundary.

(b) Zoom in view of the volume where the initial point charge is introduced (left) and
schematic representation of movement of charges (right).

(C) Zoom in schematics of a thunderstorm and CG lightning discharge.
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Impulse Response Formulation FESDD
ECCWES

7

@ Time dependent continuity equation coupled with Poisson’s equation

B . .

ait’+v- (0 E) = Sewr, V-E=p/eo

@ Impulse response of potential: Relaxation of potential after
instantaneous input of point charge 1C - ¢'R(7, t) [V/C]

e In GEC, knowing source current /(t) and impulse response of quantity
(e.g., potential ¢'R(7, t)) gives knowledge of time evolution of
potential ¢(7,t) anywhere in the domain using convolution:

(7, t) = 1(t) x o' (7, 1)
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Impulse Response — Charge Density Evolution FESD®
ECSXVES
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Impulse Response — Charge Density Evolution FESDD
ECCWES

e t = 107*s - induction of positive Q on TIB and negative Q un%‘;\
@ Local effects — above source point charge
@ Global effects — spherical large negatively charged layer
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Impulse Response — Charge Density Evolution

@ —@® moving down locally and globally as spherical layer
as "moving capacitor plate” model (MCP)
Greifinger and Greifinger, 1976: JGR, 81, 13, 2237-2247.

o Positive charge is now induced everywhere on TIB
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FESD

Impulse Response — Charge Density Evolution ECCWEQ

@ —@® moving down locally and globally as spherical layer
as "moving capacitor plate” model (MCP)
Greifinger and Greifinger, 1976: JGR, 81, 13, 2237-2247.

o t =10%s - neutralization of source point charge starts
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Impulse Response — Charge Density Evolution EEE\SND

m

t = 10%s - large negatively charged layer neutralizes Earth char
Locally around source - charge is not yet neutralized

Globally — Positive charge homogenously distributed on TIB

t = 10%s - Only charge in domain is on TIB, everywhere else p = 0
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lonospheric Potential FESDD
ECCWES

@ lonospheric potential Uy —
Average difference between TIB
and Earth

Uie = fTIB ¢d5 . fEarth(ﬁdS
1IE =
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Impulse Response of Point Charge — Ui EEE\S/\/DED

@ For h=9.5km
o Negative ionospheric potential
e Short time scales —
logarithmic drop with ¢t (MCP

model)
e Long time scales — exponential
drop (t ~ a(9,650km))

o Convergent state — Charge is
homogeneous on spherical
TIB-Ugr =0

@ For h=45km

e Higher peak value of Ug
e Longer relaxation of Uig —

(t U(45km))
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Model Representation of Electrified Thunderstorm FESDS

Dipole
I=1A
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Current Distribution of Electrified Thunderstorm FESDD
ECCWES

%

@ Above source — upward current
@ Top ionospheric boundary — horizontal current distributing charge
@ In fair weather region — downward constant current
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lonospheric Potential of Electrified Thunderstorm FESDD
ECCWES

@ For current dipole: ;?\

Uie(t) = I+ UIR(t, hy = 9.5km) — I * Ui (t, ho = 4.5km)

Direct simulation Prediction using |
impulse response|
40+ formulation
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@ Results are published in [Jansky and Pasko, JGR, 119, 10184, 2014].
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Large Scale Conductivity Perturbation of GEC FESDD
ECCWES

@ Gamma-ray burst on August 27, 1998 — influence on VLF /\
[Inan et al, GRL, 26(22), 3357-3360, 1999], no influence on ELF [Price
and Mushtak, JASTP, 63, 1043-1047, 2001].

Top ionospheric boundary
Thunderstorm -
current dipole,”

The shaded part of the globe is Conductivity is increased to 100
illuminated by gamma ray flare above 20 km either on same or
[Inan et al, GRL, 26(22), opposite hemisphere as reference
3357-3360, 1999]. thunderstorm.
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@ lonospheric potential changes by 1V. o

@ The small differences due to perturbation (less than 2%) are caused
by the small contribution of conductivity above 20 km to the total
resistance of the atmosphere.

@ See more in [Jansky and Pasko, JGR, 120, 10654, 2015] and poster
presentation on Wednesday MLTS-02.
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Earthquake Lights EEES\,DE;

@ Our GEC model provides tool to study coupling of lithosphere "'\
and atmosphere used for study of origin of Earthquake lights due to
currents generated inside the Earth from rock stress [Freund et al.,
Phys. Chem. Earth, 31, 389, 2006].

@ See more at poster presentation on Wednesday MLTS-04.
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