Capturing acoustic energy input into the upper atmosphere using free flying sensor arrays

Daniel C. Bowman¹ Jonathan M. Lees²

¹Sandia National Laboratories ²Department of Geological Sciences, UNC Chapel Hill

June 22, 2016

Acoustic Waves in the Atmosphere

The infrasound band: between 0.004 and 20 Hz Sources include:

Propagation

Distance, km

Distance, km

Acoustic wave dissipation heats the upper atmosphere:

- ▶ 30 K/day heating from microbarom (Rind, 1977)
- 0.03 K from explosions (Drobzheva and Krasnov, 2006)
- ho pprox 13 K/day from thunderstorms (Krasnov et al., 2007)
- Intentional heating is unfeasible (ibid.)

Acoustic instruments are confined to the Earth's surface. Consequences:

- Up going wave population has not been measured
- Some acoustic signals may never reach the Earth's surface
- Pervasive wind noise

Microphones on Balloons

Quasi-Lagrangian high altitude flight system:

- Samples mid/upper stratosphere
- Distance from noise sources
- Very low differential wind

Image Credit: Mary Lide Parker, UNC Research Communications

Infrasound in the Stratosphere

Fourier spectrogram: 15 second window, 14.5 second overlap

Bowman and Lees Acoustic energy flux

Answer three key questions:

- What is the acoustic wave field at the MLT boundary?
- Output to the second second
- How much heat does it contribute to the upper atmosphere?

Field Deployments

Elevation (km)

Distance (km)

Airborne geoacoustic networks \neq ground geoacoustic networks

- Increased detection range versus poor station keeping
- Low wind noise but pressure amplitude drop with altitude
- 3D network with poorly characterized noise sources

Conclusions

National Science Foundation UNC Martin Fund High Altitude Student Platform Columbia Scientific Ballooning Facility National Aeronautics and Space Administration Naval Research Laboratory UNC Office of Research Communication