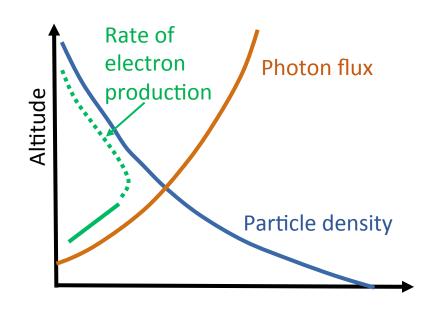

"Ionospheric Geography" Tutorial By Bea Gallardo-Lacourt

What is the lonosphere?

- The atmosphere above ~70km that is partially ionized by ultraviolet radiation from the sun
 - This region of partially ionized gas extends upwards to high altitudes where it merges with the magnetosphere
- The ionosphere was discovered in the early 1900s in connection with long distance radio transmissions


- It affects all aspects of radio wave propagation on Earth
- It's an important (and very useful!!) tool in understanding how the sun affects the Earth's environment

Ionization of the atmosphere

 Formation of layers can be understood by considering ionization of any molecule (or atom) A in the atmosphere

$$A+hv \longrightarrow A^++e^-$$
 Rate of reaction depends on concentration of molecules A and photons hv

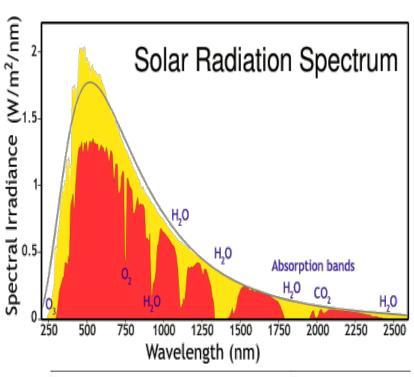
- At high altitudes there are many photons, but few particles
- At low altitudes there are many particles but few photons of sufficient energy to cause ionization

Chapman Layers

- Sydney Chapman used several assumptions to develop a simplified theoretical model
 - ✓ Atmosphere consists of only one gas
 - ✓ Radiation from the sun is monochromatic
 - ✓ Atmospheric density decreases exponentially with height
 - ✓ Solar radiation is attenuated exponentially
 - ✓ Earth is flat
- Each atmospheric species has its own ionization potential and reaction rate

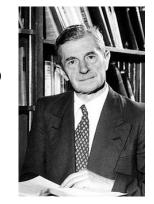
Earth's Atmosphere	Percentage
Nitrogen	78.08%
Oxygen	20.95%
Water	0 to 4%
Argon	0.93%
Carbon Dioxide	0.039%
Neon	0.0018%
Helium	0.0005%
Methane	0.00017%
Hydrogen	0.00005%
Nitrous Oxide	0.00003%
Ozone	0.000004%

Ionosphere can be modeled as superposition of simple Chapman layers



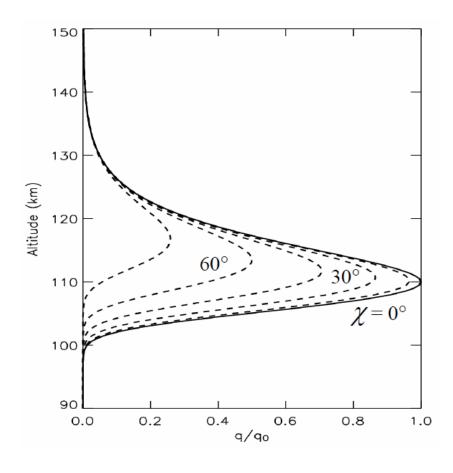
Chapman Layers

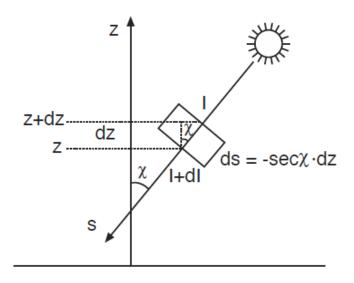
- Sydney Chapman used several assumptions to develop a simplified theoretical model
 - ✓ Atmosphere consists of only one gas
 - ✓ Radiation from the sun is monochromatic
 - ✓ Atmospheric density decreases exponentially with height
 - ✓ Solar radiation is attenuated exponentially
 - ✓ Earth is flat
- Each atmospheric species has its ov ionization potential and reaction ra


Ionosphere can be modeled as superposition of simple Chapman layers

Chapman Layers

- Sydney Chapman used several assumptions to develop a simplified theoretical model
 - ✓ Atmosphere consists of only one gas
 - ✓ Radiation from the sun is monochromatic
 - ✓ Atmospheric density decreases exponentially with height
 - ✓ Solar radiation is attenuated exponentially
 - ✓ Earth is flat
- Each atmospheric species has its own ionization potential and reaction rate
 - Ionosphere can be modeled as superposition of simple Chapman layers

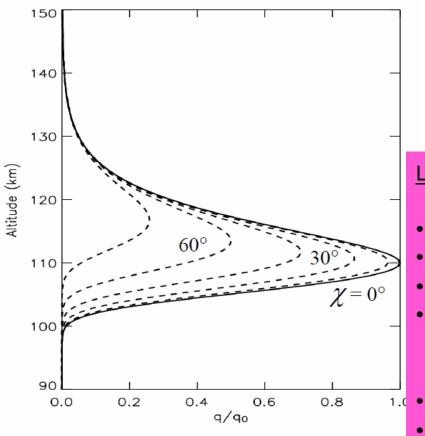


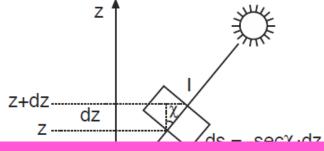

Ionization source: Solar radiation

Chapman production function by using a height variable $h' = h - \ln \sec \chi$:

$$q(\chi, h') = q_{m,0} \cos \chi \cdot \exp \left[1 - h' - e^{-h'}\right]$$
,

where χ is the solar zenith angle and $h = (z - z_{m,0})/H$, where H is the atmospheric scale height.


 With larger zenith angle χ, the peak of ionization rate rises in altitude and decreases by a factor cos χ.

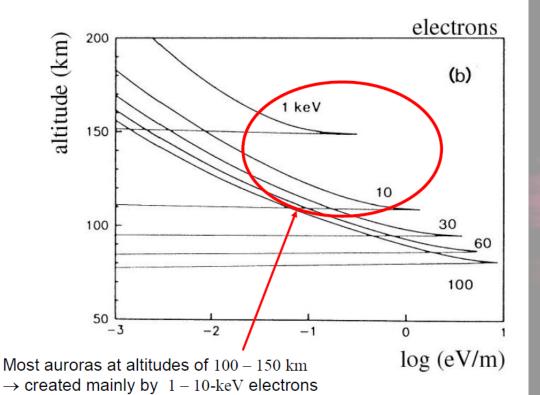

Ionization source: Solar radiation

Chapman production function by using a height variable $h' = h - \ln \sec \chi$:

$$q(\chi, h') = q_{m,0} \cos \chi \cdot \exp \left[1 - h' - e^{-h'}\right]$$
,

where χ is the solar zenith angle and $h = (z - z_{m,0})/H$, where H is the atmospheric scale height.

Limitations of Chapman Law


- Effects of magnetic field
- Collisions
- Scale height is not constant
- Assumes steady state
 - No other ionization sources
 - Constant intensity
- Severely underestimate nighttime D-region
- Gives only quantitative description

Ionization source: particle precipitation (electrons)

- In the auroral zone, also precipitating electrons and ions cause ionization
- Much more variable than solar irradiance and thus much more difficult to model
- Maintain ionosphere during the nighttime

Before recombination, electrons scatter from the atmosphere and produce

bremsstrahlung (x-ray)

~ 230 km
Red color at 630 nm
Electrons hitting atomic Oxygen

~110 km Green color at 557.7 nm Electrons hitting atomic Oxygen

~90 km
Purple color at 427.8 nm Electrons
hitting Nitrogen molecules

Ionization source: particle precipitation (protons)

- Weak blue emission at 486.1 nm (Hβ) and red emission at 656.3 nm (Hα) as different excitations of neutral hydrogen
- Diffuse glow

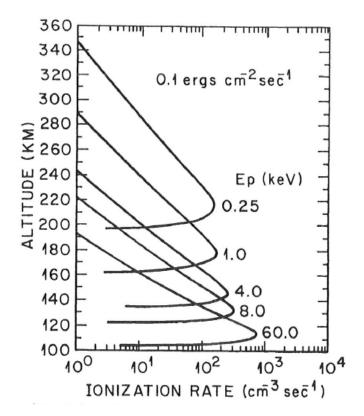
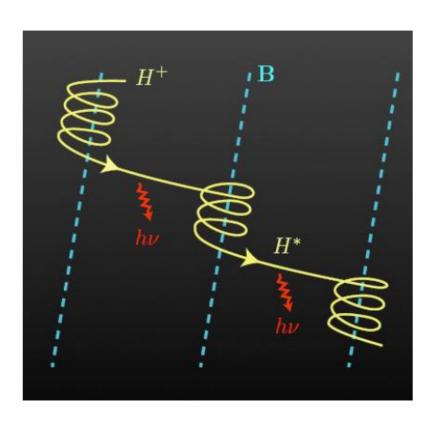
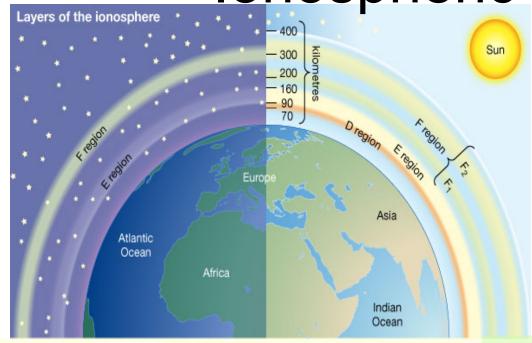




Figure: Ionization rate for monoenergetic protons with energies 0.25–60 keV (Rees, 1982).

Protons may make charge exchange with neutral hydrogen

Ionospheric regions

D region (70-90 km)

- Lowest region, produced by Lyman series alpha radiation (λ= 121.6 nm) ionizing Nitric Oxide (NO)
- Very weakly ionized
- Electron densities of 10⁸ –10¹⁰ e⁻/m³ during the day
- At night, when there is little incident radiation (except for cosmic rays), the D layer mostly disappears except at very high latitudes

E Region (90-140 km)

- Produced by X-ray and far ultraviolet radiation ionizing molecular oxygen (O₂)
- Daylight maximum electron density of about 10¹¹e⁻/m³
 - Occurs at ~100km
- At night the E layer begins to disappear due to lack of incident radiation
 - This results in the height of maximum density increasing

F1 Layer (140-200km)

- Electron density ~3x10¹¹e⁻/m³
- Caused by ionization of atomic Oxygen
 (O) by extreme ultraviolet radiation
 (10-100nm)

F2 Layer (>200km)

- Usually has highest electron density (~2x10¹²e⁻/m³)
- Consists primarily of ionized atomic
 Oxygen (O+) and Nitrogen (N+)

Ionospheric regions

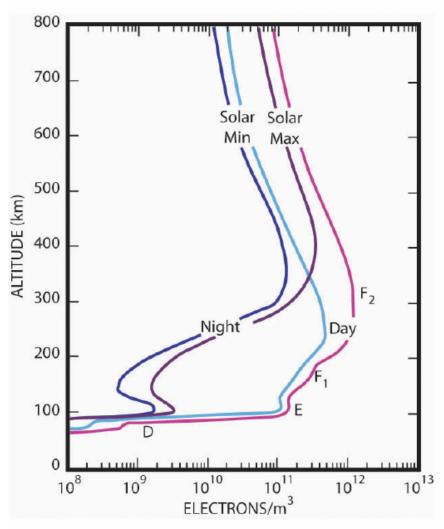
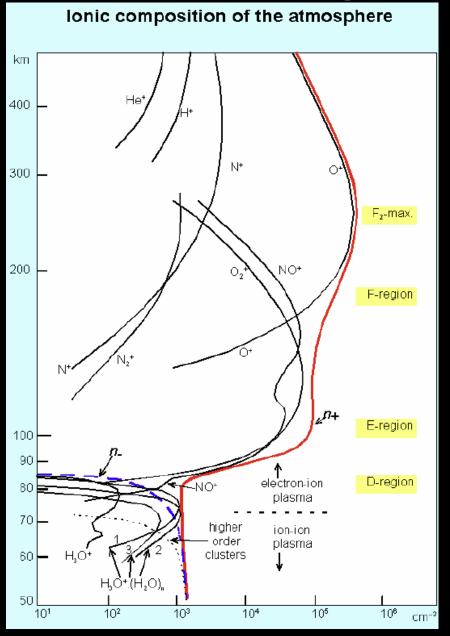
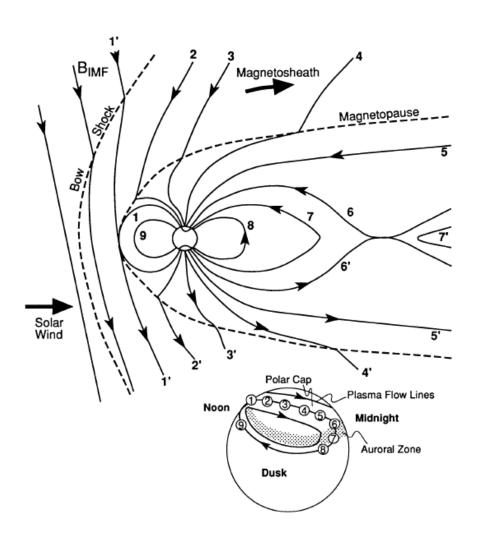


Figure: Typical ionospheric electron density profiles.


Ionospheric regions and typical daytime electron densities:

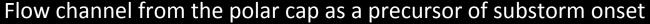
- D region: 60–90 km, $n_e = 10^8 10^{10} \text{ m}^{-3}$
- E region: 90–150 km, $n_e = 10^{10} 10^{11} \text{ m}^{-3}$
- F region: 150–1000 km, $n_e = 10^{11} 10^{12} \text{ m}^{-3}$.

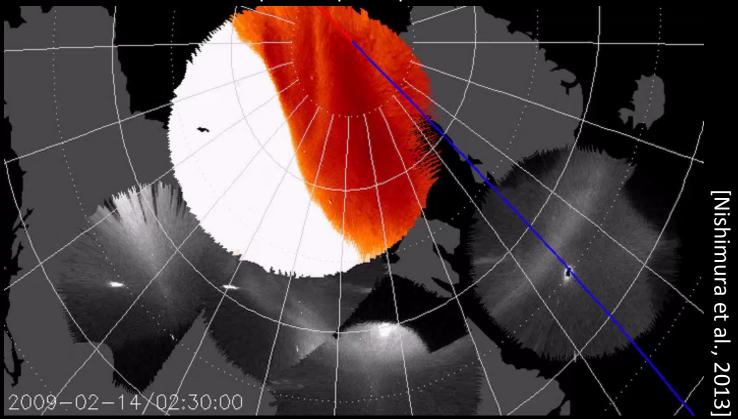
Ionosphere has great variability:


- Solar cycle variations (in specific upper F region)
- Day-night variation in lower F, E and D regions
- Space weather effects based on short-term solar variability (lower F, E and D regions)

Ionospheric regions

- O⁺ dominates around F region peak and H⁺ starts to increase rapidly above 300 km.
- NO⁺ and O₂⁺ are the dominant ions in E and upper D regions (Ion chemistry: e.g. $N_2^+ + O \longrightarrow NO^+ + N$).
- D-region contains positive and negative ions (e.g. O_2^-) and ion clusters (e.g. $H^+(H_2O)_n$, $(NO)^+(H_2O)_n$).

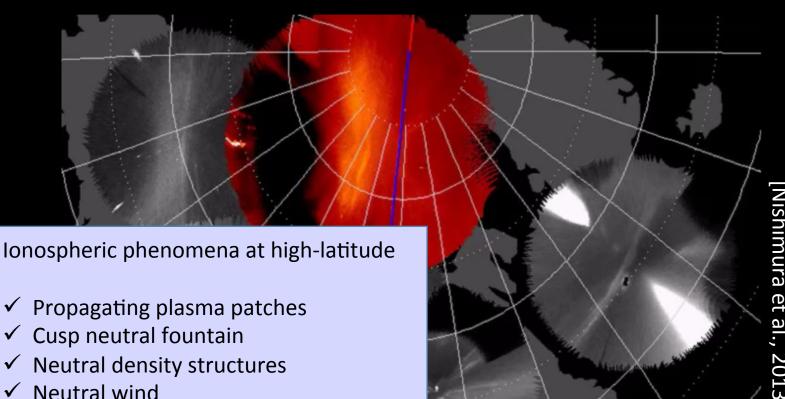

Latitudinal domains in the ionosphere: The ionosphere at high, middle and low latitudes



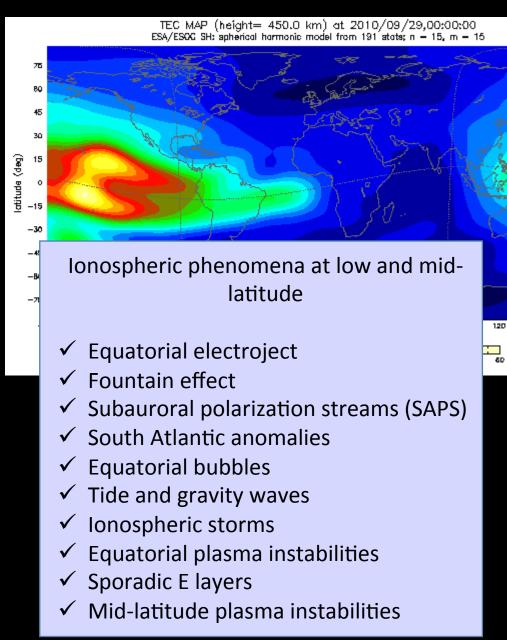
- High-latitude ionosphere (polar cap, cusp, auroral oval): intense electric fields mapping from the magnetosphere, particle precipitation, effects of magnetospheric substorms.
- Mid-latitude ionosphere: occasionaly high-latitude electric fields may penetrate to mid-latitudes, effects of magnetic storms.
- Low-latitude ionosphere: small electric fields, high day-time conductivities due to solar radiation (equatorial electrojet).

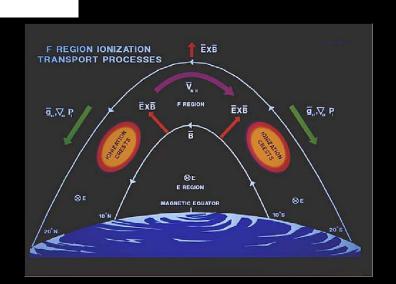
Figure: IMF coupling to the magnetosphere.

High-Latitude Ionosphere



- Polar cap patches are localized enhancements in ionospheric density.
- Polar cap arcs are arcs propagating in the polar cap during periods of northward IMF
- Poleward boundary intensifications (PBI) are intensifications along the poleward boundary of the auroral oval
- Auroral stremers are roughly north-south aligned arcs that travels within the auroral oval


High-Latitude Ionosphere


Flow channel from the polar cap as a precursor of substorm onset

- Neutral density structures
- **Neutral** wind
- Geomagnetic storms
- **Substorms**
- Energetic ion outflow

Low and mid-Latitude Ionosphere

Concluding remarks

The lonosphere is amazingly interesting!!!!!

- The ionosphere is a partially ionized layer above 70km
- Ionosphere shows solar activity dependence
- Ionized by: Solar radiation and particle precipitation
- The ionosphere has layers: D, E and F
- The ionosphere has different latitudinal domains: polar cap, auroral zone, sub-auroral latitudes, mid-latitudes, low latitudes, equatorial zone)

