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ULF waves are important for transferring energy throughout 
the magnetosphere and, in particular, carrying changes in the 
field-aligned current

These waves can be modeled by global MHD simulations
 However, only longer period ULF waves can be accurately modeled.
 In addition, near-Earth region “gap” not modeled.

Propagation of Alfvén waves strongly affected by plasma 
inhomogeneity and coupling to the ionosphere.

Linearized wave models can give a good description of 
magnetosphere-ionosphere coupling by Alfvén waves
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MHD Wave Modes
Linearized MHD equations give 3 wave modes:
 Slow mode (ion acoustic wave): 

• Plasma and magnetic pressure balance along magnetic field
• Electron pressure coupled to ion inertia by electric field

 Intermediate mode (shear Alfvén wave):
• Magnetic tension balanced by ion inertia
• Guided along geomagnetic field
• Carries field-aligned current

 Fast mode (magnetosonic wave):
• Magnetic and plasma pressure balanced by ion inertia
• Transmits total pressure variations across magnetic field

These dispersion relations are valid for a uniform 
plasma: modes can be coupled by inhomogeneity
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(Note dispersion relations given are in low β limit)



Magnetospheric ULF Waves: Terminology

MHD waves with periods from 0.2 – 600 sec (1.7 mHz – 5 Hz) are 
classified as “Pc” (continuous) or “Pi” (irregular) with number giving 
frequency range:
 Pc1 (0.2-5 s), Pc2 (5-10 s), Pc3 (10-45 s), Pc4 (45-150 s) and Pc5 (150-600 s)
 Pi1 (1-40 s), Pi2 (40-150 s)

Dipole field parameterized by L (equatorial distance in Earth radii)

Dipole coordinates:  (=1/L, outward or poleward);  (azimuthal, usually 
measured in Magnetic Local Time, MLT);  (field-aligned)

Azimuthal mode number m often used (eim dependence)

Waves classified as toroidal (E, B) or poloidal (E, B)

At low m, poloidal mode is compressional (fast mode) while toroidal is 
guided along field (shear Alfvén mode)

At high m, toroidal mode is compressional and poloidal is guided.



Density and Alfvén speed profiles

Model based on ionospheric model as in Kelley (1989), plasmasphere 
model of Chappell (1972), 1/r density dependence along high-latitude field 
lines.
Plasmapause at L=4, width of transition 0.1 RE

Log Density (cm-3), Max= 8.17e+006
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Alfvén Waves are like waves on a string: Field 
Line Resonances

Above: Harmonic structure of FLR.  Note that highly 
conductive ionosphere leads to node in electric field.

Left: Observations of Field Line Resonance 
frequencies.  Top panel gives first 3 harmonic 
frequencies, middle gives inferred density profile and 
bottom is inferred Alfvén speed: frequencies ~ 10-20 
mHz (50-100 sec period)
.Takahashi and Anderson, 1992

Kivelson and Russell, 1995



Excitation of Field Line Resonances: 
Linear mode conversion

Low-m compressional waves can be excited by compression at 
the magnetopause or the plasma sheet
 Dynamic pressure fluctuations in solar wind
 Kelvin-Helmholtz instability
 Fast flows from magnetotail; dipolarization fronts

For azimuthal symmetry (m=0) compressional and shear 
Alfvén modes uncoupled
 Compressional mode gives “breathing” mode: radial velocities
 Shear Alfvén waves carry field-aligned current

Finite values of m lead to mode coupling between shear and 
compressional waves
High-m waves are shielded from the inner magnetosphere; 
such waves are generated internally by plasma instabilities, 
e.g., drift-bounce resonance



Fast mode cutoff at large m
Fast mode propagates isotropically,  = kVA

Total k must be bigger than azimuthal component, k = m/r sin 
At a given frequency f (in Hz), fast mode waves cannot 
propagate if m > 2fr sin /VA, plotted below for f = 20 mHz



Production of Small Scales: Phase Mixing

Gradients in the Alfvén speed lead to phase                        
mixing, producing smaller perpendicular scales                
(basic mechanism behind field line resonance.)

Such gradients are always present, especially in 
boundary regions:
 Plasma Sheet Boundary Layer: poleward boundary of 

aurora

 Boundaries of aurora density cavities (e.g., Chaston et 
al., 2006, at right)

Scale length estimated to be ~ (A/P) L0, where 
A= 1/0VA is Alfvén conductance and L0 is 
gradient scale length.

VA



Reflection of Alfvén Waves by the 
Ionosphere

Ionosphere acts as terminator for 
Alfvén transmission line, with 
admittance A = 1/0VA.

But, impedances don’t match:  
wave is reflected

Usually P >> A, so electric field 
of reflected wave is reversed 
(“short-circuit”)

Reflection coefficient:

Effective Pedersen conductivity 
modified by Hall conductance, 
parallel electric fields(Mallinckrodt and Carlson, 1978)
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Modeling ULF waves with Global MHD

A number of authors have used global MHD to model ULF 
waves (Claudepierre et al., 2010, 2016; Ream et al, 2013, 
2015; Shi et al., 2013)
Advantages of this approach:
 Fully nonlinear MHD; Self-consistent magnetic geometry
 Direct driving by solar wind fluctuations
 Open system: waves can propagate out of tail

System can be driven by idealized solar wind conditions (to 
understand system response) or by conditions observed by 
upstream monitors (to simulate actual events)



Driving with sinusoidal dynamic pressure
Claudepierre et al. (2010) drove LFM model with sinusoidal dynamic pressure 
variations, 10 mHz case shown
Field line resonance appears at L ~ 7 (white field line)
Pressure perturbation drives strongest waves off the Sun-Earth line (9, 15 MLT)
Spectrum (d) and mode structure (e) show fundamental field line resonance
 Apparent nodes in Er since cylindrical coordinates used; Er is parallel to B0 at two points

Equatorial plane Er Er at 15 MLT B at 15 MLT

Er: blue
B: green
Solid: simulation
Dashed: Dipole solution



Response to a sudden impulse
Shi et al. (2013, 2014) studied SI events from THEMIS, 
coupled with OpenGGCM simulations (Raeder et al., 2008)
Of 13 events studied, 3 showed evidence of field line 
resonances (missed in other cases?)
Simulations are suggestive of vortex structure near 
magnetopause caused by pressure imbalance as fast mode 
wave propagates faster than solar wind to tail (Sibeck, 1990)
Vortex structure can mode                                               
convert to shear Alfvén wave at                                            
field line resonances                                



Bursty flows and Pi2 pulsations

Substorms are associated with bursty bulk flows (BBFs) that can lead to 
oscillations in the Pi2 range
Global MHD models (Ream et al., 2013, 2015; Fujita and Tanaka, 2013) 
have been used to model this interaction
Leading edge of BBF is referred to as dipolarization front, which often has 
slow mode character, but can launch a fast mode wave (Kepko et al., 2001) 
that runs ahead of the flow
Sides of BBF show strong vorticity in the flow, providing a direct means 
for field-aligned current generation
Braking of BBF can be oscillatory due to overshoot and rebound, possibly 
providing a source (Panov et al., 2013, 2014)
At low latitudes, plasmaspheric virtual resonance can trap waves at Pi2 
frequencies (Lee and Kim, 1999)



Comparison of Two Global MHD Models
Ream et al. (2015) used UCLA model (Raeder et al., 1998; El-Alaoui, 
2001) and LFM model (Lyon et al., 2004)
Results are shown in terms of radial-distance vs. time plots below
Note these models have no plasmasphere, so no plasmaspheric resonance



Effect of the plasmasphere
Claudepierre et al. (2016) have recently done first global MHD simulations 
with a plasmasphere, based on the coupled LFM/RCM model
Dense plasmasphere lowers the Alfvén speed, producing peak in Alfvén 
speed just outside the plasmapause
Radial electric field shows toroidal field line resonance, azimuthal E and 
parallel B give compressional mode (dotted lines are plasmapause and 
magnetopause

No plasmasphere

With plasmasphere

Reduced FLR frequency Compressional resonance 
in plasmasphere



Courant Condition

A fundamental stability condition is the Courant condition,    
t < x/V , where V is a characteristic speed (wave speed, 
convection speed, etc.)
 In other words, information can not move more than the spatial step 

size in one time step
 Thus, improving spatial resolution requires smaller time steps
 Also, higher spatial resolution needed where wave speeds are high
 In global MHD models, limited spatial resolution 

implies higher frequency waves are attenuated
• Example at right (Claudepierre et al., 2010): Blue 

spectrum is at upstream boundary, green spectrum 10 RE
closer to Earth

 Near Earth, the Alfvén speed is high and spatial 
gradients are large, so most global MHD models 
have inner boundary at 2-3 RE: “Gap” region



Modeling the “Gap”
To describe propagation across the high-Alfvén speed gap region, most 
global MHD codes use an instantaneous mapping from inner simulation 
boundary to ionosphere.
 Not such a bad approximation since wave speeds are very fast in this 

region anyway

Inner boundary fields are related by assuming current continuity and 
electrostatic fields in a height-integrated ionosphere:

Conductivity tensor can vary with local time, solar activity, and electron 
precipitation: various MHD models treat this somewhat differently 

For example, current density can be determined from MHD fields, 
continuity equation is solved for potential, and the EB drift from the 
resulting electric field is fed back to simulation (in some cases including 
parallel electric field from Knight relation).

|| sinj i    




Boris Correction

Alfvén speed also high in lobes and in inner magnetosphere if 
plasmasphere is not included
To limit wave speed, the perpendicular displacement current is 
included, which modifies wave speed to
In real world, this keeps the Alfvén speed less than the speed 
of light
In simulations, an artificially low speed of light gives lower 
limit to wave speed, allowing for larger time step: Boris 
correction (Boris, 1970)
Often this has no practical effect on simulation, but for ULF 
wave studies it can lead to incorrect resonant frequencies

2 2/ 1 /A A Ac V V c 



Usefulness of linearized models
As we’ve seen, global models do not provide a good description close to 
the Earth, especially in auroral zones where Alfvén speed can approach the 
(real) speed of light.
By simplifying the equations by linearization, the Courant condition can be 
satisfied with smaller time steps without excessive computational time.
This procedure can also allow for a detailed description of the ionosphere, 
beyond the usual height-integrated ionosphere assumption.
These models do not explicitly include solar wind-magnetosphere 
interaction, but are very useful for numerical experiments that can illustrate 
the important physical processes.
Better spatial resolution allows modeling of higher frequency waves 
(Pc1,2; Pi1)
The equations can be further simplified by the use of dipolar coordinates.



Orthogonal Dipole Coordinates
Orthogonal dipolar coordinates 
have been widely used to model 
ULF waves in the magnetosphere 
(e.g,. Radoski, 1967; Lysak, 1985; 
Lee and Lysak, 1989, 1991; 
Rankin et al., 1993, 1994; 
Streltsov and Lotko, 1995, 1999; 
Fujita et al., 2000, 2001, 2002).
These are defined by:

These give right-handed 
coordinate system with scale 
factors
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Wave equations in orthogonal coordinates
Ideal linear MHD cold plasma equations can be written in terms 
of Maxwell’s equations:
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Here we have ε = ε0(1 + c2/VA
2), and       is the magnetic field direction.

In orthogonal dipole coordinates, these equations become:
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Here for azimuthal symmetry, EBφ give the shear (toroidal) mode and 
Eφ, Bν and Bμ give the compressional (poloidal) mode.



Advantages and Disadvantages of Orthogonal Dipole 
Coordinates

These coordinates are easy to define, provide a clear separation 
of the modes, and distinguish parallel and perpendicular 
dynamics.

Mapping factors are built in, e.g., hνEν and hφEφ are constant 
along a field line in the electrostatic case.

Curl equations are easy to implement on a staggered grid.

However, ionospheric boundary should be at a constant radial 
distance, rather than constant μ.

Also, near equator, field lines become very short and coordinate 
system becomes singular.

As a result of these conditions and the high Alfvén speed at low 
altitudes, early models using dipole coordinates did not model 
the “gap” region



A non-orthogonal dipole coordinate system

A possible fix is to modify the μ
coordinate so that it is constant at the 
ionospheric distance RI .  Coordinates 
can now be written in terms of the 
contravariant coordinates:
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A short course in differential geometry
(D’haeseleer et al., 1991; Proehl et al., 2002)

Two sets of basis vectors (not unit vectors):
 Contravariant                  (normal to surface ui = constant) 
 Covariant                    (tangent to ui coordinate curve)
 Note that we have 
 For a vector A, we can write 

Metric tensor:
 Gives length element:                             (sum implied)

 Scale factors
Jacobian:
 Gives volume element: 

Vector relations can be written in terms of these 
quantities, e.g.,
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Contravariant and Covariant Basis 
Vectors
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Wave equations in modified dipole coordinates: 
ideal MHD

Wave equations can now be written as:
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Modeling Pi2 pulsations 

Eν, Shear Alfvén modeBμ, Compressional mode
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Model is driven by a compressional pulse at midnight given by a 
damped oscillation at 50 seconds



Results: Bμ and Eν in meridian and equator
Eν, Shear Alfvén modeBμ, Compressional mode
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Comparison of Bμ and Eφ:  Standing wave structure in plasmasphere
Plot shows B (solid) and E (dashed) as function of time at midnight MLT
90 degree phase shift seen for L < 4 (in plasmasphere)



Example: Modeling of Pc4 pulsations
Dai et al. (2013, 2015) studied poloidal Pc4 waves with Van Allen Probes
Non-compressional (high m) poloidal waves observed in late storm 
recovery phase
But high-m waves are cut off, cannot be externally driven
Solution: Introduce fluctuating current source to model decaying ring 
current (McEachern, Ph.D. thesis, 2016)
2.5 dimensional model: azimuthal variation ~ eim

Waves largely trapped just outside the plasmapause

(McEachern, 2016)



Higher Frequency (Pc1, Pi1) ULF Waves: 
Dipole Model with full ionosphere

At higher frequencies (f > 0.1 Hz), need to consider ionospheric structure
Hall conductivity couples shear Alfvén and fast modes
Presence of fast mode implies ionospheric electric field not electrostatic
Strong gradients of Alfvén speed above ionosphere become important: 
Ionospheric Alfvén Resonator
New model includes distributed Pedersen, Hall and parallel conductivities 
and inductive ionosphere

(Waters et al., 2013; Lysak et al., 2013)

 Pedersen, Hall, parallel conductivity, Lat= 59.97
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Wave equations with ionospheric conductivity
With ionospheric conductivities, current is
Then the perpendicular components of Ampere’s Law become

Assuming a vertical magnetic field and using Cartesian components for simplicity 
we can write this as

Diagonalizing the matrix, we find eigenvalues

Writing E = Ex  iEy and F = Fx  iFy , ionospheric equations become 

This can be directly integrated: 

Note real part of λ± (σP) gives damping; imaginary part (σH) rotates electric vector 
in xy plane (Hughes rotation)  
These equations are written in terms of the full non-orthogonal components in the 
code..                                   
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Inductive Ionospheric Boundary Condition 
(Yoshikawa and Itonaga, 1996; Lysak and Song, 2006)
Many M-I coupling models use an electrostatic boundary condition 
and current conductivity to model the ionosphere:
However, this boundary condition only deals with the shear mode that 
carries field-aligned current; it does not provide a boundary condition 
for the fast mode waves.
A more general boundary condition can be found by integrating 
Ampere’s Law over the ionosphere: 

For vertical field lines and uniform    , taking the divergence yields the 
usual electrostatic condition, while taking the curl gives a second 
condition:

These equations illustrate the coupling of the shear mode (div E) and 
the fast mode (curl E) by the Hall conductivity.

Note that this equation requires knowledge of B in the atmosphere.
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The Atmospheric Solution
Implementation of this model requires a solution below 
the ionosphere.
Assume atmosphere is perfectly insulating, ground is 
perfectly conducting
Then in atmosphere can use magnetic scalar potential

Field is “frozen-in” to ground, so
Radial magnetic field is continuous through layer, so Ψ is 
set by matching solution to simulation Br
Solution can be written in terms of spherical harmonics, 
modified to fit simulation boundaries:

Note that this solution allows direct calculation of ground 
magnetic fields as well as field just below ionosphere.
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Ionospheric Shielding Effect
Ionospheric Pedersen conductivity acts 
to shield higher frequency waves 
(collisional skin depth)
Results are shown from a numerical 
model of Alfvén wave propagation 
including full ionosphere (Lysak et al., 
2013)
Model is driven with a broad-band 
“white noise” spectrum consisting of 
100 waves from 0-2 Hz with equal 
amplitudes and random phases.
It can be seen that the higher frequency 
components are attenuated at lower 
altitudes in the ionosphere
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Ionospheric Alfvén Resonator

Alfvén speed rises sharply above 
ionosphere due to exponential fall of 
plasma density.

Wave propagation speed goes back to 
the speed of light at altitudes below 
the ionosphere.

The minimum in Alfvén  speed in 
ionosphere forms a resonant cavity 
for shear Alfvén waves (Ionospheric 
Alfvén Resonator) and a waveguide 
for fast mode waves in 1-10 s period 
range.

Fast and shear Alfvén modes are 
coupled by the Hall conductivity in 
the ionosphere.
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IAR Mode Structures: First 3 Harmonics, m=0

Ex (top) and By (bottom) mode structures for 0.12, 0.36, and 0.62 Hz runs 
showing harmonic structures in IAR.  Only region below 2 RE is shown
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Mode Coupling: Effect of Hall conductivity
Hall currents couple shear mode and fast mode: Fast mode propagates 
horizontally in Pc1 waveguide (e.g., Fraser, 1976; Engebretson et al., 2002)
This propagation gives characteristic pattern of polarization, reproduced in 
simulations of Woodroffe and Lysak (2012):



Pc1 “Pearls”
Pc1 waves often occur in wave packets, called “pearls” (e.g., Fraser, 2006)

Ground Bx Parallel Poynting flux

0.96 Hz

1.22 Hz

2.00 Hz

System driven by a 10-
second long wave packet 
with given frequency
IAR resonant frequency is 
1.22 Hz in this case
Ground Bx (poleward) 
component shown (left), 
with Poynting flux (right)
Off-resonant frequency 
(0.96 Hz) dies out quickly; 
higher frequency (2 Hz) 
doesn’t penetrate 
ionosphere
Resonant wave (1.22 Hz) 
gives longer lasting wave 
train due to multiple 
reflections.

(Lysak et al., 2013)



3d ULF Wave Model
Fully 3-d wave model needed to avoid assumption of single m number

Height-resolved ionospheric model gives more realistic ionospheric fields.  

Ground magnetic fields calculated from spherical harmonic expansion.

Region from L = 1.5 to L = 10 modeled.  Plasmapause at L=4.

Model is 3d, with 128x64x318 cells in L-shell (ν), MLT (φ), and distance 
along field line (μ), using staggered Yee grid 

Compressional driver on outer boundary, Gaussian in latitude and 
longitude.  Inner L-shell uses Bμ= 0 boundary condition (no compression).

Newest feature: Ionospheric conductivity based on solar zenith angle; 
subsolar point can be varied for seasonal differences.



Density and Alfvén speed profiles

Model based on ionospheric model as in Kelley (1989), plasmasphere 
model of Chappell (1972), 1/r density dependence along high-latitude field 
lines.
Plasmapause at L=4, width of transition 0.1 RE
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Alfvén travel time profile

50 sec driver resonates near L = 3 and 6, consistent with 
simulation results
Third harmonic (150 sec) at L = 8.5
Note range of frequencies at plasmapause: excitation of 
plasmapause surface wave?
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Day/Night Conductivity Effects

Sun is placed at equator: equinox conditions
Ionosphere varies from daytime profile to nighttime profile 
based on solar zenith angle:



Toroidal Fields: Dayside Driving
Waves driven by compression at noon, 50 second period
Field magnitudes scaled to ionospheric altitude
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Day-night differences: Nightside driving
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Ground magnetic fields
For dayside driving, ground magnetic fields stay on dayside, but for 
nightside driving, field line resonances appear on dayside.
Note dawn-dusk asymmetry: results from Hall conductivity
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At solstice, one end of field line can be in darkness while the other is sunlit
In sunlit (high conductivity) hemisphere, electric fields are weak
This can give rise to waves with node in one hemisphere and antinode in 
the other (“quarter waves”: Obana et al., 2015)
Conductivity models based on solar zenith angle at footpoint of field line, 
with Sun at 23° from equator

Northern Summer: Search for ¼ waves

ΣP, North ΣP, South



System driven at 100 second period on dayside
Fields shown at dawn terminator (MLT = 6)
Electric fields stronger in winter hemisphere, magnetic field in summer
Poynting flux directed toward winter hemisphere (agrees with statistical 
results of Junginger et al., 1985)
In contrast to symmetric case, field-aligned current flows from one 
hemisphere to the other (contours of B approximate current flow lines)

Northern Summer: Search for ¼ waves

Electric field E Magnetic field B
Field-aligned Poynting flux 
(blue southward)



Electric and Magnetic Fields at 6 MLT
Northern summer conditions at dawn terminator



Poynting Flux at 6 MLT
Northern summer conditions at dawn terminator



Things not covered

Simple static conductivity model is not always valid
 Ionospheric feedback: self-consistent precipitation can change 

conductivity (e.g., Lysak and Song, 2002; Streltsov and Lotko, 2008)
 Would be preferable to include full ionospheric and thermospheric

dynamics (e.g., Otto et al., 2003; Sydorenko and Rankin, 2012)
• However, collision frequency high enough so inertial terms higher-order 

correction.

Kinetic Alfvén waves: a whole separate talk
 Electron inertia gives broad-band electron acceleration at low altitudes 

(e.g., Lysak and Song, 2008)
 In warmer plasma region, electron pressure can lead to parallel electric 

fields (e.g., Lysak and Song, 2011)
 Hybrid models with particle electrons can better describe electron 

acceleration including effects of electron trapping (e.g., Watt and 
Rankin, 2010; Damiano and Johnson, 2012)




