Theory and Modeling of ULF Waves Robert L. Lysak (U. Minnesota) Collaborators: Yan Song (U. Minn.), Colin L. Waters, Murray D. Sciffer (U.Newcastle)

- ULF waves are important for transferring energy throughout the magnetosphere and, in particular, carrying changes in the field-aligned current
- These waves can be modeled by global MHD simulations
- ➤ However, only longer period ULF waves can be accurately modeled.
- ≻ In addition, near-Earth region "gap" not modeled.
- Propagation of Alfvén waves strongly affected by plasma inhomogeneity and coupling to the ionosphere.
- Linearized wave models can give a good description of magnetosphere-ionosphere coupling by Alfvén waves

Outline

- Introduction to ULF waves
 - Dispersion relations and terminology
 - Field line resonances and phase mixing
 - ➤ Interaction with the ionosphere
- Global MHD Models
 - Response to dayside transients
 - ➤ Response to fast flows in the tail
- Linearized Wave Models
 - ➢ Pi2 propagation
 - Internal sources: Poloidal Pc4
 - Pi1/Pc1 waves: higher frequencies require height-resolved ionosphere

MHD Wave Modes

• Linearized MHD equations give 3 wave modes:

> Slow mode (ion acoustic wave): $\omega = k_{\parallel}c_s \left(c_s = \sqrt{\gamma p / \rho}\right)$

- Plasma and magnetic pressure balance along magnetic field
- Electron pressure coupled to ion inertia by electric field

> Intermediate mode (shear Alfvén wave): $\omega = k_{\parallel}V_A \left(V_A = B / \sqrt{\mu_0 \rho}\right)$

- Magnetic tension balanced by ion inertia
- Guided along geomagnetic field
- Carries field-aligned current

> Fast mode (magnetosonic wave): $\omega = \sqrt{k^2 V_A^2 + k_\perp^2 c_s^2}$

- Magnetic and plasma pressure balanced by ion inertia
- Transmits total pressure variations across magnetic field
- These dispersion relations are valid for a uniform plasma: modes can be coupled by inhomogeneity

(Note dispersion relations given are in low β limit)

Magnetospheric ULF Waves: Terminology

- MHD waves with periods from 0.2 600 sec (1.7 mHz 5 Hz) are classified as "Pc" (continuous) or "Pi" (irregular) with number giving frequency range:
 - ➢ Pc1 (0.2-5 s), Pc2 (5-10 s), Pc3 (10-45 s), Pc4 (45-150 s) and Pc5 (150-600 s)
 - ➢ Pi1 (1-40 s), Pi2 (40-150 s)
- Dipole field parameterized by L (equatorial distance in Earth radii)
- Dipole coordinates: ν (=1/L, outward or poleward); φ (azimuthal, usually measured in Magnetic Local Time, MLT); μ (field-aligned)
- Azimuthal mode number *m* often used ($e^{im\varphi}$ dependence)
- Waves classified as *toroidal* (E_{ν}, B_{ϕ}) or *poloidal* (E_{ϕ}, B_{ν})
- At low *m*, poloidal mode is compressional (fast mode) while toroidal is guided along field (shear Alfvén mode)
- At high *m*, toroidal mode is compressional and poloidal is guided.

Density and Alfvén speed profiles

- Model based on ionospheric model as in Kelley (1989), plasmasphere model of Chappell (1972), 1/r density dependence along high-latitude field lines.
- Plasmapause at L=4, width of transition 0.1 R_E

Alfvén Waves are like waves on a string: Field Line Resonances

Above: Harmonic structure of FLR. Note that highly conductive ionosphere leads to node in electric field.

Left: Observations of Field Line Resonance frequencies. Top panel gives first 3 harmonic frequencies, middle gives inferred density profile and bottom is inferred Alfvén speed: frequencies ~ 10-20 mHz (50-100 sec period)

Excitation of Field Line Resonances: Linear mode conversion

- Low-*m* compressional waves can be excited by compression at the magnetopause or the plasma sheet
 - Dynamic pressure fluctuations in solar wind
 - Kelvin-Helmholtz instability
 - ➢ Fast flows from magnetotail; dipolarization fronts
- For azimuthal symmetry (*m*=0) compressional and shear Alfvén modes uncoupled
 - Compressional mode gives "breathing" mode: radial velocities
 - Shear Alfvén waves carry field-aligned current
- Finite values of *m* lead to mode coupling between shear and compressional waves
- High-*m* waves are shielded from the inner magnetosphere; such waves are generated internally by plasma instabilities, e.g., drift-bounce resonance

Fast mode cutoff at large m

- Fast mode propagates isotropically, $\omega = kV_A$
- Total k must be bigger than azimuthal component, $k_{\phi} = m/r \sin \theta$
- At a given frequency f(in Hz), fast mode waves cannot propagate if $m > 2\pi fr \sin \theta / V_A$, plotted below for f = 20 mHz

Production of Small Scales: Phase Mixing

- Gradients in the Alfvén speed lead to phase mixing, producing smaller perpendicular scales (basic mechanism behind field line resonance.)
- Such gradients are always present, especially in boundary regions:
 - Plasma Sheet Boundary Layer: poleward boundary of aurora
 - Boundaries of aurora density cavities (e.g., Chaston et al., 2006, at right)
- Scale length estimated to be ~ $(\Sigma_A / \Sigma_P) L_0$, where $\Sigma_A = 1/\mu_0 V_A$ is Alfvén conductance and L_0 is gradient scale length.

Reflection of Alfvén Waves by the Ionosphere

(Mallinckrodt and Carlson, 1978)

- Ionosphere acts as terminator for Alfvén transmission line, with admittance $\Sigma_A = 1/\mu_0 V_A$.
- But, impedances don't match: wave is reflected
- Usually Σ_P >> Σ_A, so electric field of reflected wave is reversed ("short-circuit")
- Reflection coefficient:

 $R = \frac{E_{up}}{E_{down}} = \frac{\Sigma_A - \Sigma_{P,eff}}{\Sigma_A + \Sigma_{P,eff}}$ • Effective Pedersen conductivity modified by Hall conductance, parallel electric fields

Modeling ULF waves with Global MHD

- A number of authors have used global MHD to model ULF waves (Claudepierre et al., 2010, 2016; Ream et al, 2013, 2015; Shi et al., 2013)
- Advantages of this approach:
 - Fully nonlinear MHD; Self-consistent magnetic geometry
 - Direct driving by solar wind fluctuations
 - Open system: waves can propagate out of tail
- System can be driven by idealized solar wind conditions (to understand system response) or by conditions observed by upstream monitors (to simulate actual events)

Driving with sinusoidal dynamic pressure

- Claudepierre et al. (2010) drove LFM model with sinusoidal dynamic pressure variations, 10 mHz case shown
- Field line resonance appears at $L \sim 7$ (white field line)
- Pressure perturbation drives strongest waves off the Sun-Earth line (9, 15 MLT)
- Spectrum (d) and mode structure (e) show fundamental field line resonance
 - > Apparent nodes in E_r since cylindrical coordinates used; E_r is parallel to B_0 at two points

Response to a sudden impulse

- Shi et al. (2013, 2014) studied SI events from THEMIS, coupled with OpenGGCM simulations (Raeder et al., 2008)
- Of 13 events studied, 3 showed evidence of field line resonances (missed in other cases?)
- Simulations are suggestive of vortex structure near magnetopause caused by pressure imbalance as fast mode wave propagates faster than solar wind to tail (Sibeck, 1990)
- Vortex structure can mode convert to shear Alfvén wave at field line resonances

Bursty flows and Pi2 pulsations

- Substorms are associated with bursty bulk flows (BBFs) that can lead to oscillations in the Pi2 range
- Global MHD models (Ream et al., 2013, 2015; Fujita and Tanaka, 2013) have been used to model this interaction
- Leading edge of BBF is referred to as dipolarization front, which often has slow mode character, but can launch a fast mode wave (Kepko et al., 2001) that runs ahead of the flow
- Sides of BBF show strong vorticity in the flow, providing a direct means for field-aligned current generation
- Braking of BBF can be oscillatory due to overshoot and rebound, possibly providing a source (Panov et al., 2013, 2014)
- At low latitudes, plasmaspheric virtual resonance can trap waves at Pi2 frequencies (Lee and Kim, 1999)

Comparison of Two Global MHD Models

- Ream et al. (2015) used UCLA model (Raeder et al., 1998; El-Alaoui, 2001) and LFM model (Lyon et al., 2004)
- Results are shown in terms of radial-distance vs. time plots below
- Note these models have no plasmasphere, so no plasmaspheric resonance

Effect of the plasmasphere

- Claudepierre et al. (2016) have recently done first global MHD simulations with a plasmasphere, based on the coupled LFM/RCM model
- Dense plasmasphere lowers the Alfvén speed, producing peak in Alfvén speed just outside the plasmapause
- Radial electric field shows toroidal field line resonance, azimuthal E and parallel B give compressional mode (dotted lines are plasmapause and magnetopause

Courant Condition

- A fundamental stability condition is the Courant condition, $\delta t < \delta x/V$, where *V* is a characteristic speed (wave speed, convection speed, etc.)
 - In other words, information can not move more than the spatial step size in one time step
 - > Thus, improving spatial resolution requires smaller time steps
 - > Also, higher spatial resolution needed where wave speeds are high
 - In global MHD models, limited spatial resolution implies higher frequency waves are attenuated
 - Example at right (Claudepierre et al., 2010): Blue spectrum is at upstream boundary, green spectrum 10 R_E closer to Earth
 - Near Earth, the Alfvén speed is high and spatial gradients are large, so most global MHD models have inner boundary at 2-3 R_E: "Gap" region

Modeling the "Gap"

- To describe propagation across the high-Alfvén speed gap region, most global MHD codes use an instantaneous mapping from inner simulation boundary to ionosphere.
 - Not such a bad approximation since wave speeds are very fast in this region anyway
- Inner boundary fields are related by assuming current continuity and electrostatic fields in a height-integrated ionosphere: $j_{\parallel} \sin i = -\nabla \cdot \vec{\Sigma} \cdot \nabla \Phi$
- Conductivity tensor can vary with local time, solar activity, and electron precipitation: various MHD models treat this somewhat differently
- For example, current density can be determined from MHD fields, continuity equation is solved for potential, and the **E**×**B** drift from the resulting electric field is fed back to simulation (in some cases including parallel electric field from Knight relation).

Boris Correction

- Alfvén speed also high in lobes and in inner magnetosphere if plasmasphere is not included
- To limit wave speed, the perpendicular displacement current is included, which modifies wave speed to $c_A = V_A / \sqrt{1 + V_A^2 / c^2}$
- In real world, this keeps the Alfvén speed less than the speed of light
- In simulations, an artificially low speed of light gives lower limit to wave speed, allowing for larger time step: Boris correction (Boris, 1970)
- Often this has no practical effect on simulation, but for ULF wave studies it can lead to incorrect resonant frequencies

Usefulness of linearized models

- As we've seen, global models do not provide a good description close to the Earth, especially in auroral zones where Alfvén speed can approach the (real) speed of light.
- By simplifying the equations by linearization, the Courant condition can be satisfied with smaller time steps without excessive computational time.
- This procedure can also allow for a detailed description of the ionosphere, beyond the usual height-integrated ionosphere assumption.
- These models do not explicitly include solar wind-magnetosphere interaction, but are very useful for numerical experiments that can illustrate the important physical processes.
- Better spatial resolution allows modeling of higher frequency waves (Pc1,2; Pi1)
- The equations can be further simplified by the use of dipolar coordinates.

Orthogonal Dipole Coordinates

 Orthogonal dipolar coordinates have been widely used to model ULF waves in the magnetosphere (e.g., Radoski, 1967; Lysak, 1985; Lee and Lysak, 1989, 1991; Rankin et al., 1993, 1994; Streltsov and Lotko, 1995, 1999; Fujita et al., 2000, 2001, 2002).

• These are defined by:

$$v = -\frac{\sin^2 \theta}{r/R_E} \left(= -\frac{1}{L} \right) \qquad \varphi = \varphi \qquad \mu = \frac{\cos \theta}{\left(r/R_E \right)^2}$$

• These give right-handed coordinate system with scale factors $h_v = \frac{r^2}{R_E \sin \theta \sqrt{1 + 3\cos^2 \theta}}$ $h_{\phi} = r \sin \theta$

Lines of constant v (solid) and μ (dashed) within $r = 2 R_F$

$$h_{\mu} = \frac{r^3}{R_E^2 \sqrt{1 + 3\cos^2 \theta}} = \frac{R_E B_0}{B}$$

 Note that the lines of constant μ are close to constant radial distance near pole, but not at lower latitudes.

Wave equations in orthogonal coordinates

 Ideal linear MHD cold plasma equations can be written in terms of Maxwell's equations:

$$\varepsilon_{\perp} \left(\mathbf{\vec{I}} - \mathbf{\hat{b}}\mathbf{\hat{b}} \right) \cdot \frac{\partial \mathbf{E}}{\partial t} = \frac{1}{\mu_0} \nabla \times \mathbf{B} \qquad \qquad \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

• Here we have $\varepsilon_{\perp} = \varepsilon_0 (1 + c^2 / V_A^2)$, and $\hat{\mathbf{b}}$ is the magnetic field direction.

• Here for azimuthal symmetry, E_{ν} , B_{φ} give the shear (toroidal) mode and E_{φ} , B_{ν} and B_{μ} give the compressional (poloidal) mode.

Advantages and Disadvantages of Orthogonal Dipole Coordinates

- These coordinates are easy to define, provide a clear separation of the modes, and distinguish parallel and perpendicular dynamics.
- Mapping factors are built in, e.g., $h_{\nu}E_{\nu}$ and $h_{\phi}E_{\phi}$ are constant along a field line in the electrostatic case.
- Curl equations are easy to implement on a staggered grid.
- However, ionospheric boundary should be at a constant radial distance, rather than constant μ.
- Also, near equator, field lines become very short and coordinate system becomes singular.
- As a result of these conditions and the high Alfvén speed at low altitudes, early models using dipole coordinates did not model the "gap" region

A non-orthogonal dipole coordinate system

• A possible fix is to modify the μ coordinate so that it is constant at the ionospheric distance R_I . Coordinates can now be written in terms of the contravariant coordinates:

$$u^{1} = -\frac{R_{I}\sin^{2}\theta}{r}$$
 $u^{2} = \phi$ $u^{3} = \frac{R_{I}^{2}\cos\theta}{r^{2}\cos\theta_{I}}$

- where θ_I gives the co-latitude of the field line at the ionosphere, i.e., $\cos \theta_I = \sqrt{1 - R_I / L}$
- Note that in these coordinates, u³ = 0 is at the equator, and u³ = ±1 correspond to the ionospheres
- Coordinates singular at equator, so only good at mid-latitudes

Contours of constant *u*³ (solid) compared with coordinate lines for orthogonal system (dashed)

A short course in differential geometry (D'haeseleer et al., 1991; Proehl et al., 2002)

Two sets of basis vectors (not unit vectors): \succ Contravariant $\mathbf{e}^i = \nabla u^i$ (normal to surface $u^i = \text{constant}$) \blacktriangleright Covariant $\mathbf{e}_i = \partial \mathbf{r} / \partial u^i$ (tangent to u^i coordinate curve) \blacktriangleright Note that we have $\mathbf{e}^i \cdot \mathbf{e}_j = \delta^i_j$ \triangleright For a vector **A**, we can write $A^i = \mathbf{A} \cdot \mathbf{e}^i$, $A_i = \mathbf{A} \cdot \mathbf{e}_i$ • Metric tensor: $g_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j$ \blacktriangleright Gives length element: $ds^2 = g_{ii} du^i du^j$ (sum implied) \blacktriangleright Scale factors $h_i = \sqrt{g_{ii}} = |\mathbf{e}_i|$ • Jacobian: $J = \mathbf{e}_1 \cdot (\mathbf{e}_2 \times \mathbf{e}_3) = \left[\mathbf{e}^1 \cdot (\mathbf{e}^2 \times \mathbf{e}^3) \right]^{-1} = \sqrt{\det g}$ Sives volume element: $dV = Jdu^1 du^2 du^3$ • Vector relations can be written in terms of these quantities, e.g.,

$$\nabla \times \mathbf{A} = \frac{1}{J} \varepsilon^{ijk} \frac{\partial A_k}{\partial u^j} \mathbf{e}_i$$

Contravariant and Covariant Basis

- e¹ is perpendicular to field, e₃ is parallel.
- At ionosphere, e₁ is horizontal and northward, e³ is radially inward.
- g₁₃ is proportional to cosine of angle between e₁ and e₃
- g_{13} is biggest at ionosphere and near equator; angle becomes 90° at larger distances and near pole.

Vectors

Wave equations in modified dipole coordinates: ideal MHD

• Wave equations can now be written as:

$$\frac{\partial E^{1}}{\partial t} = \frac{V^{2}}{J} (\partial_{2}B_{3} - \partial_{3}B_{2})$$

$$\frac{\partial E^{2}}{\partial t} = \frac{V^{2}}{J} (\partial_{3}B_{1} - \partial_{1}B_{3})$$

$$E_{3} = 0$$

$$\frac{\partial B^{1}}{\partial t} = \frac{1}{J} \partial_{3}E_{2}$$
Note that E_{1} and E_{2}
are constant
along field lines
in electrostatic
case

• The fields are related by:

$$E^{1} = g^{11}E_{1} \implies E_{1} = \frac{E^{1}}{g^{11}} \qquad E_{2} = g_{22}E^{2}$$
$$B_{1} = g_{11}B^{1} + g_{13}B^{3} \qquad B_{2} = g_{22}B^{2} \qquad B_{3} = g_{31}B^{1} + g_{33}B^{3}$$

• "Physical" fields as in dipole coordinates are (same for E)

$$B_v = h_v B^1$$
 $B_{\varphi} = h_{\varphi} B^2 = B_2 / h_{\varphi}$
 $B_{\mu} = B_3 / h_{\mu}$
factor
 $h_v = \frac{r^2}{R_I \sin \theta \sqrt{1 + 3\cos^2 \theta}}$
 $h_{\varphi} = r \sin \theta$
 $h_{\mu} = \frac{r^3 \cos \theta_I}{R_I^2 \sqrt{1 + 3\cos^2 \theta}}$

Modeling Pi2 pulsations

Model is driven by a compressional pulse at midnight given by a damped oscillation at 50 seconds

Comparison of B_{μ} and E_{ϕ} : Standing wave structure in plasmasphere

- Plot shows B_{μ} (solid) and E_{ϕ} (dashed) as function of time at midnight MLT
- 90 degree phase shift seen for L < 4 (in plasmasphere)

Example: Modeling of Pc4 pulsations

- Dai et al. (2013, 2015) studied poloidal Pc4 waves with Van Allen Probes
- Non-compressional (high *m*) poloidal waves observed in late storm recovery phase
- But high-*m* waves are cut off, cannot be externally driven
- Solution: Introduce fluctuating current source to model decaying ring current (McEachern, Ph.D. thesis, 2016)
- 2.5 dimensional model: azimuthal variation ~ $e^{im\phi}$
- Waves largely trapped just outside the plasmapause

Magnetic Field Snapshots at 300s: Quiet Day , 22mHz Current, m = 32

Higher Frequency (Pc1, Pi1) ULF Waves: Dipole Model with full ionosphere (Waters et al., 2013; Lysak et al., 2013)

- At higher frequencies (f > 0.1 Hz), need to consider ionospheric structure
- Hall conductivity couples shear Alfvén and fast modes
- Presence of fast mode implies ionospheric electric field not electrostatic
- Strong gradients of Alfvén speed above ionosphere become important: Ionospheric Alfvén Resonator
- New model includes distributed Pedersen, Hall and parallel conductivities and inductive ionosphere

Wave equations with ionospheric conductivity

- With ionospheric conductivities, current is $\mathbf{j} = \sigma_P (\mathbf{\vec{l}} \mathbf{\hat{b}}\mathbf{\hat{b}}) \cdot \mathbf{E} \sigma_H \mathbf{E} \times \mathbf{\hat{b}} + \sigma_0 \mathbf{\hat{b}}\mathbf{\hat{b}} \cdot \mathbf{E}$
- Then the perpendicular components of Ampere's Law become

$$\varepsilon_{\perp} \frac{\partial \mathbf{E}_{\perp}}{\partial t} = \frac{1}{\mu_0} (\nabla \times \mathbf{B})_{\perp} - \sigma_P \mathbf{E}_{\perp} + \sigma_H \mathbf{E}_{\perp} \times \hat{\mathbf{b}}$$

• Assuming a vertical magnetic field and using Cartesian components for simplicity we can write this as

$$\frac{\partial \mathbf{E}_{\perp}}{\partial t} + \frac{1}{\varepsilon_{\perp}} \begin{pmatrix} \boldsymbol{\sigma}_{P} & -\boldsymbol{\sigma}_{H} \\ \boldsymbol{\sigma}_{H} & \boldsymbol{\sigma}_{P} \end{pmatrix} \cdot \mathbf{E}_{\perp} = \frac{1}{\varepsilon_{\perp} \mu_{0}} (\nabla \times \mathbf{B})_{\perp} \equiv \mathbf{F}_{\perp}$$

• Diagonalizing the matrix, we find eigenvalues $\lambda_{\pm} = (\sigma_P \pm i\sigma_H) / \varepsilon_{\perp}$

- Writing $E_{\pm} = E_x \pm iE_y$ and $F_{\pm} = F_x \pm iF_y$, ionospheric equations become $(\partial_t + \lambda_{\pm})E_{\pm} = F_{\pm}$
- This can be directly integrated: $E_{\pm}(t+\delta t) = E_{\pm}(t)e^{-\lambda_{\pm}t} + \delta t F_{\pm}(t+\delta t/2)e^{-\lambda_{\pm}\delta t/2}$
- Note real part of $\lambda_{\pm}(\sigma_{P})$ gives damping; imaginary part (σ_{H}) rotates electric vector in xy plane (Hughes rotation)
- These equations are written in terms of the full non-orthogonal components in the code..

Inductive Ionospheric Boundary Condition (Yoshikawa and Itonaga, 1996; Lysak and Song, 2006)

- Many M-I coupling models use an electrostatic boundary condition and current conductivity to model the ionosphere: $j_{\parallel} = -\nabla \cdot (\vec{\Sigma} \cdot \nabla \Phi)$
- However, this boundary condition only deals with the shear mode that carries field-aligned current; it does not provide a boundary condition for the fast mode waves.
- A more general boundary condition can be found by integrating Ampere's Law over the ionosphere:

 $\mu_0 \vec{\Sigma} \cdot \mathbf{E} = \hat{\mathbf{r}} \times \Delta \mathbf{B}$

• For vertical field lines and uniform $\vec{\Sigma}$, taking the divergence yields the usual electrostatic condition, while taking the curl gives a second condition: $\Sigma_P \nabla_\perp \cdot \mathbf{E}_\perp - \Sigma_H \hat{\mathbf{r}} \cdot (\nabla \times \mathbf{E}_\perp) = -j_{\parallel}$

 $\Sigma_{H} \nabla_{\perp} \cdot \mathbf{E}_{\perp} + \Sigma_{P} \hat{\mathbf{r}} \cdot (\nabla \times \mathbf{E}_{\perp}) = (1/\mu_{0}) \Delta (\partial B_{r} / \partial r)$

- These equations illustrate the coupling of the shear mode (div E) and the fast mode (curl E) by the Hall conductivity.
- Note that this equation requires knowledge of **B** in the atmosphere.

The Atmospheric Solution

- Implementation of this model requires a solution below the ionosphere.
- Assume atmosphere is perfectly insulating, ground is perfectly conducting
- Then in atmosphere can use magnetic scalar potential

 $\nabla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{B} = 0 \implies \mathbf{B} = \nabla \Psi, \ \nabla^2 \Psi = 0$

- Field is "frozen-in" to ground, so $B_r = \partial \Psi / \partial r = 0$
- Radial magnetic field is continuous through layer, so Ψ is set by matching solution to simulation B_r
- Solution can be written in terms of spherical harmonics, modified to fit simulation boundaries:

$$\Psi(r,\theta,\phi) = \sum_{l.m} \left(A_{lm} r^{\nu_l} + B_{lm} r^{-(\nu_l+1)} \right) y_{lm}(\theta,\phi)$$

• Note that this solution allows direct calculation of ground magnetic fields as well as field just below ionosphere.

Ionospheric Shielding Effect

- Ionospheric Pedersen conductivity acts to shield higher frequency waves (collisional skin depth) $\delta = \sqrt{2 / \mu_0 \omega \sigma_P}$
- Results are shown from a numerical model of Alfvén wave propagation including full ionosphere (Lysak et al., 2013)
- Model is driven with a broad-band "white noise" spectrum consisting of 100 waves from 0-2 Hz with equal amplitudes and random phases.
- It can be seen that the higher frequency components are attenuated at lower altitudes in the ionosphere

Ionospheric Alfvén Resonator

- Alfvén speed rises sharply above ionosphere due to exponential fall of plasma density.
- Wave propagation speed goes back to the speed of light at altitudes below the ionosphere.
- The minimum in Alfvén speed in ionosphere forms a resonant cavity for shear Alfvén waves (Ionospheric Alfvén Resonator) and a waveguide for fast mode waves in 1-10 s period range.
- Fast and shear Alfvén modes are coupled by the Hall conductivity in the ionosphere.

IAR Mode Structures: First 3 Harmonics, m=0

• E_x (top) and B_y (bottom) mode structures for 0.12, 0.36, and 0.62 Hz runs showing harmonic structures in IAR. Only region below 2 R_E is shown

Mode Coupling: Effect of Hall conductivity

- Hall currents couple shear mode and fast mode: Fast mode propagates horizontally in Pc1 waveguide (e.g., Fraser, 1976; Engebretson et al., 2002)
- This propagation gives characteristic pattern of polarization, reproduced in simulations of Woodroffe and Lysak (2012):

Pc1 "Pearls"

• Pc1 waves often occur in wave packets, called "pearls" (e.g., Fraser, 2006)

- System driven by a 10second long wave packet with given frequency
- IAR resonant frequency is 1.22 Hz in this case
- Ground B_x (poleward) component shown (left), with Poynting flux (right)
- Off-resonant frequency (0.96 Hz) dies out quickly; higher frequency (2 Hz) doesn't penetrate ionosphere
- Resonant wave (1.22 Hz) gives longer lasting wave train due to multiple reflections.

3d ULF Wave Model

- Fully 3-d wave model needed to avoid assumption of single *m* number
- Height-resolved ionospheric model gives more realistic ionospheric fields.
- Ground magnetic fields calculated from spherical harmonic expansion.
- Region from L = 1.5 to L = 10 modeled. Plasmapause at L=4.
- Model is 3d, with 128x64x318 cells in L-shell (ν), MLT (φ), and distance along field line (μ), using staggered Yee grid
- Compressional driver on outer boundary, Gaussian in latitude and longitude. Inner L-shell uses $B_{\mu} = 0$ boundary condition (no compression).
- Newest feature: Ionospheric conductivity based on solar zenith angle; subsolar point can be varied for seasonal differences.

Density and Alfvén speed profiles

- Model based on ionospheric model as in Kelley (1989), plasmasphere model of Chappell (1972), 1/r density dependence along high-latitude field lines.
- Plasmapause at L=4, width of transition 0.1 R_E

Alfvén travel time profile

- 50 sec driver resonates near L = 3 and 6, consistent with simulation results
- Third harmonic (150 sec) at L = 8.5
- Note range of frequencies at plasmapause: excitation of plasmapause surface wave?

Day/Night Conductivity Effects

- Sun is placed at equator: equinox conditions
- Ionosphere varies from daytime profile to nighttime profile based on solar zenith angle:

Toroidal Fields: Dayside Driving

- Waves driven by compression at noon, 50 second period
- Field magnitudes scaled to ionospheric altitude

Day-night differences: Nightside driving

- Waves driven by compression at midnight, 50 second period
- Dayside fields stronger than nightside fields for dayside driving

Ground magnetic fields

- For dayside driving, ground magnetic fields stay on dayside, but for nightside driving, field line resonances appear on dayside.
- Note dawn-dusk asymmetry: results from Hall conductivity

Northern Summer: Search for ¹/₄ waves

- At solstice, one end of field line can be in darkness while the other is sunlit
- In sunlit (high conductivity) hemisphere, electric fields are weak
- This can give rise to waves with node in one hemisphere and antinode in the other ("quarter waves": Obana et al., 2015)
- Conductivity models based on solar zenith angle at footpoint of field line, with Sun at 23° from equator

Northern Summer: Search for 1/4 waves

- System driven at 100 second period on dayside
- Fields shown at dawn terminator (MLT = 6)
- Electric fields stronger in winter hemisphere, magnetic field in summer
- Poynting flux directed toward winter hemisphere (agrees with statistical results of Junginger et al., 1985)
- In contrast to symmetric case, field-aligned current flows from one hemisphere to the other (contours of B_φ approximate current flow lines)

Electric and Magnetic Fields at 6 MLT

Northern summer conditions at dawn terminator

Poynting Flux at 6 MLT

Northern summer conditions at dawn terminator

Things not covered

• Simple static conductivity model is not always valid

- Ionospheric feedback: self-consistent precipitation can change conductivity (e.g., Lysak and Song, 2002; Streltsov and Lotko, 2008)
- Would be preferable to include full ionospheric and thermospheric dynamics (e.g., Otto et al., 2003; Sydorenko and Rankin, 2012)
 - However, collision frequency high enough so inertial terms higher-order correction.
- Kinetic Alfvén waves: a whole separate talk
 - Electron inertia gives broad-band electron acceleration at low altitudes (e.g., Lysak and Song, 2008)
 - In warmer plasma region, electron pressure can lead to parallel electric fields (e.g., Lysak and Song, 2011)
 - Hybrid models with particle electrons can better describe electron acceleration including effects of electron trapping (e.g., Watt and Rankin, 2010; Damiano and Johnson, 2012)

