2025 Workshop: Reconnection simulation

Long title

How to set up the initial condition for simulations of magnetic reconnection? GEM-only session

Conveners

Krishna Khanal

M. Hasan Barbhuiya

Chen Shi

Yi Qi

John Dorelli

Katherine Goodrich

yi.qi@lasp.colorado.edu

Description

Magnetic reconnection spans a wide range of scales, from large-scale fluid (MHD) behavior to small-scale particle (kinetic) dynamics. Numerical simulations have become increasingly advantageous for studying complex, multiscale reconnection physics, which cannot be fully explored through analytical or experimental/observational methods. The first critical step in a reconnection simulation is initializing a current sheet within a background plasma and magnetic field. Then, small "seed" perturbations are introduced in the current sheet to trigger reconnection. The system is subsequently allowed to evolve within a predefined computational domain. In this student-oriented session, we invite presenters to discuss the fundamental steps involved in setting up reconnection simulations.

Agenda

Zoom link:

https://cuboulder.zoom.us/j/92875278306

Justification

Numerical simulations are valuable tools for testing physical models, predicting reconnection dynamics, and interpreting observational data. Successful simulations require careful consideration of the numerical model, boundary conditions, background magnetic field, and plasma properties, the geometry of the computational domain, etc. The choice of these parameters is primarily driven by the specific problem at hand and the computational resources available. The session will bring together the experts of reconnection simulations to share their knowledge and insights. The tutorial will be highly valuable to current as well as prospective student researchers, providing them with the fundamentals of performing the reconnection simulations.

Related to CEDAR Science Thrusts:
Explore processes related to geospace evolution
Workshop format
Short Presentations
Hands On Training
Keywords
reconnection, space plasma, numerical simulation
View PDF